Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)393654}\\\end{array}
Use the 1^{st} digit 3 from dividend 393654
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)393654}\\\end{array}
Since 3 is less than 18, use the next digit 9 from dividend 393654 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)393654}\\\end{array}
Use the 2^{nd} digit 9 from dividend 393654
\begin{array}{l}\phantom{18)}02\phantom{4}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}3\\\end{array}
Find closest multiple of 18 to 39. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 39 to get reminder 3. Add 2 to quotient.
\begin{array}{l}\phantom{18)}02\phantom{5}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}33\\\end{array}
Use the 3^{rd} digit 3 from dividend 393654
\begin{array}{l}\phantom{18)}021\phantom{6}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}33\\\phantom{18)}\underline{\phantom{9}18\phantom{999}}\\\phantom{18)9}15\\\end{array}
Find closest multiple of 18 to 33. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 33 to get reminder 15. Add 1 to quotient.
\begin{array}{l}\phantom{18)}021\phantom{7}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}33\\\phantom{18)}\underline{\phantom{9}18\phantom{999}}\\\phantom{18)9}156\\\end{array}
Use the 4^{th} digit 6 from dividend 393654
\begin{array}{l}\phantom{18)}0218\phantom{8}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}33\\\phantom{18)}\underline{\phantom{9}18\phantom{999}}\\\phantom{18)9}156\\\phantom{18)}\underline{\phantom{9}144\phantom{99}}\\\phantom{18)99}12\\\end{array}
Find closest multiple of 18 to 156. We see that 8 \times 18 = 144 is the nearest. Now subtract 144 from 156 to get reminder 12. Add 8 to quotient.
\begin{array}{l}\phantom{18)}0218\phantom{9}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}33\\\phantom{18)}\underline{\phantom{9}18\phantom{999}}\\\phantom{18)9}156\\\phantom{18)}\underline{\phantom{9}144\phantom{99}}\\\phantom{18)99}125\\\end{array}
Use the 5^{th} digit 5 from dividend 393654
\begin{array}{l}\phantom{18)}02186\phantom{10}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}33\\\phantom{18)}\underline{\phantom{9}18\phantom{999}}\\\phantom{18)9}156\\\phantom{18)}\underline{\phantom{9}144\phantom{99}}\\\phantom{18)99}125\\\phantom{18)}\underline{\phantom{99}108\phantom{9}}\\\phantom{18)999}17\\\end{array}
Find closest multiple of 18 to 125. We see that 6 \times 18 = 108 is the nearest. Now subtract 108 from 125 to get reminder 17. Add 6 to quotient.
\begin{array}{l}\phantom{18)}02186\phantom{11}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}33\\\phantom{18)}\underline{\phantom{9}18\phantom{999}}\\\phantom{18)9}156\\\phantom{18)}\underline{\phantom{9}144\phantom{99}}\\\phantom{18)99}125\\\phantom{18)}\underline{\phantom{99}108\phantom{9}}\\\phantom{18)999}174\\\end{array}
Use the 6^{th} digit 4 from dividend 393654
\begin{array}{l}\phantom{18)}021869\phantom{12}\\18\overline{)393654}\\\phantom{18)}\underline{\phantom{}36\phantom{9999}}\\\phantom{18)9}33\\\phantom{18)}\underline{\phantom{9}18\phantom{999}}\\\phantom{18)9}156\\\phantom{18)}\underline{\phantom{9}144\phantom{99}}\\\phantom{18)99}125\\\phantom{18)}\underline{\phantom{99}108\phantom{9}}\\\phantom{18)999}174\\\phantom{18)}\underline{\phantom{999}162\phantom{}}\\\phantom{18)9999}12\\\end{array}
Find closest multiple of 18 to 174. We see that 9 \times 18 = 162 is the nearest. Now subtract 162 from 174 to get reminder 12. Add 9 to quotient.
\text{Quotient: }21869 \text{Reminder: }12
Since 12 is less than 18, stop the division. The reminder is 12. The topmost line 021869 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 21869.