Evaluate
\frac{28}{19}\approx 1.473684211
Factor
\frac{2 ^ {2} \cdot 7}{19} = 1\frac{9}{19} = 1.4736842105263157
Share
Copied to clipboard
\begin{array}{l}\phantom{266)}\phantom{1}\\266\overline{)392}\\\end{array}
Use the 1^{st} digit 3 from dividend 392
\begin{array}{l}\phantom{266)}0\phantom{2}\\266\overline{)392}\\\end{array}
Since 3 is less than 266, use the next digit 9 from dividend 392 and add 0 to the quotient
\begin{array}{l}\phantom{266)}0\phantom{3}\\266\overline{)392}\\\end{array}
Use the 2^{nd} digit 9 from dividend 392
\begin{array}{l}\phantom{266)}00\phantom{4}\\266\overline{)392}\\\end{array}
Since 39 is less than 266, use the next digit 2 from dividend 392 and add 0 to the quotient
\begin{array}{l}\phantom{266)}00\phantom{5}\\266\overline{)392}\\\end{array}
Use the 3^{rd} digit 2 from dividend 392
\begin{array}{l}\phantom{266)}001\phantom{6}\\266\overline{)392}\\\phantom{266)}\underline{\phantom{}266\phantom{}}\\\phantom{266)}126\\\end{array}
Find closest multiple of 266 to 392. We see that 1 \times 266 = 266 is the nearest. Now subtract 266 from 392 to get reminder 126. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }126
Since 126 is less than 266, stop the division. The reminder is 126. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}