3915 \% =
Evaluate
\frac{783}{20}=39.15
Factor
\frac{3 ^ {3} \cdot 29}{2 ^ {2} \cdot 5} = 39\frac{3}{20} = 39.15
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)3915}\\\end{array}
Use the 1^{st} digit 3 from dividend 3915
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)3915}\\\end{array}
Since 3 is less than 100, use the next digit 9 from dividend 3915 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)3915}\\\end{array}
Use the 2^{nd} digit 9 from dividend 3915
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)3915}\\\end{array}
Since 39 is less than 100, use the next digit 1 from dividend 3915 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)3915}\\\end{array}
Use the 3^{rd} digit 1 from dividend 3915
\begin{array}{l}\phantom{100)}003\phantom{6}\\100\overline{)3915}\\\phantom{100)}\underline{\phantom{}300\phantom{9}}\\\phantom{100)9}91\\\end{array}
Find closest multiple of 100 to 391. We see that 3 \times 100 = 300 is the nearest. Now subtract 300 from 391 to get reminder 91. Add 3 to quotient.
\begin{array}{l}\phantom{100)}003\phantom{7}\\100\overline{)3915}\\\phantom{100)}\underline{\phantom{}300\phantom{9}}\\\phantom{100)9}915\\\end{array}
Use the 4^{th} digit 5 from dividend 3915
\begin{array}{l}\phantom{100)}0039\phantom{8}\\100\overline{)3915}\\\phantom{100)}\underline{\phantom{}300\phantom{9}}\\\phantom{100)9}915\\\phantom{100)}\underline{\phantom{9}900\phantom{}}\\\phantom{100)99}15\\\end{array}
Find closest multiple of 100 to 915. We see that 9 \times 100 = 900 is the nearest. Now subtract 900 from 915 to get reminder 15. Add 9 to quotient.
\text{Quotient: }39 \text{Reminder: }15
Since 15 is less than 100, stop the division. The reminder is 15. The topmost line 0039 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}