Evaluate
\frac{391}{25}=15.64
Factor
\frac{17 \cdot 23}{5 ^ {2}} = 15\frac{16}{25} = 15.64
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)391}\\\end{array}
Use the 1^{st} digit 3 from dividend 391
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)391}\\\end{array}
Since 3 is less than 25, use the next digit 9 from dividend 391 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)391}\\\end{array}
Use the 2^{nd} digit 9 from dividend 391
\begin{array}{l}\phantom{25)}01\phantom{4}\\25\overline{)391}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}14\\\end{array}
Find closest multiple of 25 to 39. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 39 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{25)}01\phantom{5}\\25\overline{)391}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}141\\\end{array}
Use the 3^{rd} digit 1 from dividend 391
\begin{array}{l}\phantom{25)}015\phantom{6}\\25\overline{)391}\\\phantom{25)}\underline{\phantom{}25\phantom{9}}\\\phantom{25)}141\\\phantom{25)}\underline{\phantom{}125\phantom{}}\\\phantom{25)9}16\\\end{array}
Find closest multiple of 25 to 141. We see that 5 \times 25 = 125 is the nearest. Now subtract 125 from 141 to get reminder 16. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }16
Since 16 is less than 25, stop the division. The reminder is 16. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}