Evaluate
17
Factor
17
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)391}\\\end{array}
Use the 1^{st} digit 3 from dividend 391
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)391}\\\end{array}
Since 3 is less than 23, use the next digit 9 from dividend 391 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)391}\\\end{array}
Use the 2^{nd} digit 9 from dividend 391
\begin{array}{l}\phantom{23)}01\phantom{4}\\23\overline{)391}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}16\\\end{array}
Find closest multiple of 23 to 39. We see that 1 \times 23 = 23 is the nearest. Now subtract 23 from 39 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{23)}01\phantom{5}\\23\overline{)391}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}161\\\end{array}
Use the 3^{rd} digit 1 from dividend 391
\begin{array}{l}\phantom{23)}017\phantom{6}\\23\overline{)391}\\\phantom{23)}\underline{\phantom{}23\phantom{9}}\\\phantom{23)}161\\\phantom{23)}\underline{\phantom{}161\phantom{}}\\\phantom{23)999}0\\\end{array}
Find closest multiple of 23 to 161. We see that 7 \times 23 = 161 is the nearest. Now subtract 161 from 161 to get reminder 0. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }0
Since 0 is less than 23, stop the division. The reminder is 0. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}