Evaluate
1954
Factor
2\times 977
Share
Copied to clipboard
\begin{array}{l}\phantom{200)}\phantom{1}\\200\overline{)390800}\\\end{array}
Use the 1^{st} digit 3 from dividend 390800
\begin{array}{l}\phantom{200)}0\phantom{2}\\200\overline{)390800}\\\end{array}
Since 3 is less than 200, use the next digit 9 from dividend 390800 and add 0 to the quotient
\begin{array}{l}\phantom{200)}0\phantom{3}\\200\overline{)390800}\\\end{array}
Use the 2^{nd} digit 9 from dividend 390800
\begin{array}{l}\phantom{200)}00\phantom{4}\\200\overline{)390800}\\\end{array}
Since 39 is less than 200, use the next digit 0 from dividend 390800 and add 0 to the quotient
\begin{array}{l}\phantom{200)}00\phantom{5}\\200\overline{)390800}\\\end{array}
Use the 3^{rd} digit 0 from dividend 390800
\begin{array}{l}\phantom{200)}001\phantom{6}\\200\overline{)390800}\\\phantom{200)}\underline{\phantom{}200\phantom{999}}\\\phantom{200)}190\\\end{array}
Find closest multiple of 200 to 390. We see that 1 \times 200 = 200 is the nearest. Now subtract 200 from 390 to get reminder 190. Add 1 to quotient.
\begin{array}{l}\phantom{200)}001\phantom{7}\\200\overline{)390800}\\\phantom{200)}\underline{\phantom{}200\phantom{999}}\\\phantom{200)}1908\\\end{array}
Use the 4^{th} digit 8 from dividend 390800
\begin{array}{l}\phantom{200)}0019\phantom{8}\\200\overline{)390800}\\\phantom{200)}\underline{\phantom{}200\phantom{999}}\\\phantom{200)}1908\\\phantom{200)}\underline{\phantom{}1800\phantom{99}}\\\phantom{200)9}108\\\end{array}
Find closest multiple of 200 to 1908. We see that 9 \times 200 = 1800 is the nearest. Now subtract 1800 from 1908 to get reminder 108. Add 9 to quotient.
\begin{array}{l}\phantom{200)}0019\phantom{9}\\200\overline{)390800}\\\phantom{200)}\underline{\phantom{}200\phantom{999}}\\\phantom{200)}1908\\\phantom{200)}\underline{\phantom{}1800\phantom{99}}\\\phantom{200)9}1080\\\end{array}
Use the 5^{th} digit 0 from dividend 390800
\begin{array}{l}\phantom{200)}00195\phantom{10}\\200\overline{)390800}\\\phantom{200)}\underline{\phantom{}200\phantom{999}}\\\phantom{200)}1908\\\phantom{200)}\underline{\phantom{}1800\phantom{99}}\\\phantom{200)9}1080\\\phantom{200)}\underline{\phantom{9}1000\phantom{9}}\\\phantom{200)999}80\\\end{array}
Find closest multiple of 200 to 1080. We see that 5 \times 200 = 1000 is the nearest. Now subtract 1000 from 1080 to get reminder 80. Add 5 to quotient.
\begin{array}{l}\phantom{200)}00195\phantom{11}\\200\overline{)390800}\\\phantom{200)}\underline{\phantom{}200\phantom{999}}\\\phantom{200)}1908\\\phantom{200)}\underline{\phantom{}1800\phantom{99}}\\\phantom{200)9}1080\\\phantom{200)}\underline{\phantom{9}1000\phantom{9}}\\\phantom{200)999}800\\\end{array}
Use the 6^{th} digit 0 from dividend 390800
\begin{array}{l}\phantom{200)}001954\phantom{12}\\200\overline{)390800}\\\phantom{200)}\underline{\phantom{}200\phantom{999}}\\\phantom{200)}1908\\\phantom{200)}\underline{\phantom{}1800\phantom{99}}\\\phantom{200)9}1080\\\phantom{200)}\underline{\phantom{9}1000\phantom{9}}\\\phantom{200)999}800\\\phantom{200)}\underline{\phantom{999}800\phantom{}}\\\phantom{200)999999}0\\\end{array}
Find closest multiple of 200 to 800. We see that 4 \times 200 = 800 is the nearest. Now subtract 800 from 800 to get reminder 0. Add 4 to quotient.
\text{Quotient: }1954 \text{Reminder: }0
Since 0 is less than 200, stop the division. The reminder is 0. The topmost line 001954 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1954.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}