Evaluate
15024
Factor
2^{4}\times 3\times 313
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)390624}\\\end{array}
Use the 1^{st} digit 3 from dividend 390624
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)390624}\\\end{array}
Since 3 is less than 26, use the next digit 9 from dividend 390624 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)390624}\\\end{array}
Use the 2^{nd} digit 9 from dividend 390624
\begin{array}{l}\phantom{26)}01\phantom{4}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}13\\\end{array}
Find closest multiple of 26 to 39. We see that 1 \times 26 = 26 is the nearest. Now subtract 26 from 39 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{26)}01\phantom{5}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}130\\\end{array}
Use the 3^{rd} digit 0 from dividend 390624
\begin{array}{l}\phantom{26)}015\phantom{6}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}130\\\phantom{26)}\underline{\phantom{}130\phantom{999}}\\\phantom{26)999}0\\\end{array}
Find closest multiple of 26 to 130. We see that 5 \times 26 = 130 is the nearest. Now subtract 130 from 130 to get reminder 0. Add 5 to quotient.
\begin{array}{l}\phantom{26)}015\phantom{7}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}130\\\phantom{26)}\underline{\phantom{}130\phantom{999}}\\\phantom{26)999}6\\\end{array}
Use the 4^{th} digit 6 from dividend 390624
\begin{array}{l}\phantom{26)}0150\phantom{8}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}130\\\phantom{26)}\underline{\phantom{}130\phantom{999}}\\\phantom{26)999}6\\\end{array}
Since 6 is less than 26, use the next digit 2 from dividend 390624 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0150\phantom{9}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}130\\\phantom{26)}\underline{\phantom{}130\phantom{999}}\\\phantom{26)999}62\\\end{array}
Use the 5^{th} digit 2 from dividend 390624
\begin{array}{l}\phantom{26)}01502\phantom{10}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}130\\\phantom{26)}\underline{\phantom{}130\phantom{999}}\\\phantom{26)999}62\\\phantom{26)}\underline{\phantom{999}52\phantom{9}}\\\phantom{26)999}10\\\end{array}
Find closest multiple of 26 to 62. We see that 2 \times 26 = 52 is the nearest. Now subtract 52 from 62 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{26)}01502\phantom{11}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}130\\\phantom{26)}\underline{\phantom{}130\phantom{999}}\\\phantom{26)999}62\\\phantom{26)}\underline{\phantom{999}52\phantom{9}}\\\phantom{26)999}104\\\end{array}
Use the 6^{th} digit 4 from dividend 390624
\begin{array}{l}\phantom{26)}015024\phantom{12}\\26\overline{)390624}\\\phantom{26)}\underline{\phantom{}26\phantom{9999}}\\\phantom{26)}130\\\phantom{26)}\underline{\phantom{}130\phantom{999}}\\\phantom{26)999}62\\\phantom{26)}\underline{\phantom{999}52\phantom{9}}\\\phantom{26)999}104\\\phantom{26)}\underline{\phantom{999}104\phantom{}}\\\phantom{26)999999}0\\\end{array}
Find closest multiple of 26 to 104. We see that 4 \times 26 = 104 is the nearest. Now subtract 104 from 104 to get reminder 0. Add 4 to quotient.
\text{Quotient: }15024 \text{Reminder: }0
Since 0 is less than 26, stop the division. The reminder is 0. The topmost line 015024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15024.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}