Evaluate
16276
Factor
2^{2}\times 13\times 313
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)390624}\\\end{array}
Use the 1^{st} digit 3 from dividend 390624
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)390624}\\\end{array}
Since 3 is less than 24, use the next digit 9 from dividend 390624 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)390624}\\\end{array}
Use the 2^{nd} digit 9 from dividend 390624
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}15\\\end{array}
Find closest multiple of 24 to 39. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 39 to get reminder 15. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}150\\\end{array}
Use the 3^{rd} digit 0 from dividend 390624
\begin{array}{l}\phantom{24)}016\phantom{6}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}150\\\phantom{24)}\underline{\phantom{}144\phantom{999}}\\\phantom{24)99}6\\\end{array}
Find closest multiple of 24 to 150. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 150 to get reminder 6. Add 6 to quotient.
\begin{array}{l}\phantom{24)}016\phantom{7}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}150\\\phantom{24)}\underline{\phantom{}144\phantom{999}}\\\phantom{24)99}66\\\end{array}
Use the 4^{th} digit 6 from dividend 390624
\begin{array}{l}\phantom{24)}0162\phantom{8}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}150\\\phantom{24)}\underline{\phantom{}144\phantom{999}}\\\phantom{24)99}66\\\phantom{24)}\underline{\phantom{99}48\phantom{99}}\\\phantom{24)99}18\\\end{array}
Find closest multiple of 24 to 66. We see that 2 \times 24 = 48 is the nearest. Now subtract 48 from 66 to get reminder 18. Add 2 to quotient.
\begin{array}{l}\phantom{24)}0162\phantom{9}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}150\\\phantom{24)}\underline{\phantom{}144\phantom{999}}\\\phantom{24)99}66\\\phantom{24)}\underline{\phantom{99}48\phantom{99}}\\\phantom{24)99}182\\\end{array}
Use the 5^{th} digit 2 from dividend 390624
\begin{array}{l}\phantom{24)}01627\phantom{10}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}150\\\phantom{24)}\underline{\phantom{}144\phantom{999}}\\\phantom{24)99}66\\\phantom{24)}\underline{\phantom{99}48\phantom{99}}\\\phantom{24)99}182\\\phantom{24)}\underline{\phantom{99}168\phantom{9}}\\\phantom{24)999}14\\\end{array}
Find closest multiple of 24 to 182. We see that 7 \times 24 = 168 is the nearest. Now subtract 168 from 182 to get reminder 14. Add 7 to quotient.
\begin{array}{l}\phantom{24)}01627\phantom{11}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}150\\\phantom{24)}\underline{\phantom{}144\phantom{999}}\\\phantom{24)99}66\\\phantom{24)}\underline{\phantom{99}48\phantom{99}}\\\phantom{24)99}182\\\phantom{24)}\underline{\phantom{99}168\phantom{9}}\\\phantom{24)999}144\\\end{array}
Use the 6^{th} digit 4 from dividend 390624
\begin{array}{l}\phantom{24)}016276\phantom{12}\\24\overline{)390624}\\\phantom{24)}\underline{\phantom{}24\phantom{9999}}\\\phantom{24)}150\\\phantom{24)}\underline{\phantom{}144\phantom{999}}\\\phantom{24)99}66\\\phantom{24)}\underline{\phantom{99}48\phantom{99}}\\\phantom{24)99}182\\\phantom{24)}\underline{\phantom{99}168\phantom{9}}\\\phantom{24)999}144\\\phantom{24)}\underline{\phantom{999}144\phantom{}}\\\phantom{24)999999}0\\\end{array}
Find closest multiple of 24 to 144. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 144 to get reminder 0. Add 6 to quotient.
\text{Quotient: }16276 \text{Reminder: }0
Since 0 is less than 24, stop the division. The reminder is 0. The topmost line 016276 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16276.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}