Evaluate
\frac{390}{43}\approx 9.069767442
Factor
\frac{2 \cdot 3 \cdot 5 \cdot 13}{43} = 9\frac{3}{43} = 9.069767441860465
Share
Copied to clipboard
\begin{array}{l}\phantom{43)}\phantom{1}\\43\overline{)390}\\\end{array}
Use the 1^{st} digit 3 from dividend 390
\begin{array}{l}\phantom{43)}0\phantom{2}\\43\overline{)390}\\\end{array}
Since 3 is less than 43, use the next digit 9 from dividend 390 and add 0 to the quotient
\begin{array}{l}\phantom{43)}0\phantom{3}\\43\overline{)390}\\\end{array}
Use the 2^{nd} digit 9 from dividend 390
\begin{array}{l}\phantom{43)}00\phantom{4}\\43\overline{)390}\\\end{array}
Since 39 is less than 43, use the next digit 0 from dividend 390 and add 0 to the quotient
\begin{array}{l}\phantom{43)}00\phantom{5}\\43\overline{)390}\\\end{array}
Use the 3^{rd} digit 0 from dividend 390
\begin{array}{l}\phantom{43)}009\phantom{6}\\43\overline{)390}\\\phantom{43)}\underline{\phantom{}387\phantom{}}\\\phantom{43)99}3\\\end{array}
Find closest multiple of 43 to 390. We see that 9 \times 43 = 387 is the nearest. Now subtract 387 from 390 to get reminder 3. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }3
Since 3 is less than 43, stop the division. The reminder is 3. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}