Solve for k
k=\frac{\ln(\frac{4009}{264})}{e}\approx 1.000760106
Share
Copied to clipboard
39.6=601.35e^{\left(-k\right)e}
Multiply 63.3 and 9.5 to get 601.35.
601.35e^{\left(-k\right)e}=39.6
Swap sides so that all variable terms are on the left hand side.
e^{\left(-k\right)e}=\frac{39.6}{601.35}
Divide both sides by 601.35.
e^{\left(-k\right)e}=\frac{3960}{60135}
Expand \frac{39.6}{601.35} by multiplying both numerator and the denominator by 100.
e^{\left(-k\right)e}=\frac{264}{4009}
Reduce the fraction \frac{3960}{60135} to lowest terms by extracting and canceling out 15.
e^{-ek}=\frac{264}{4009}
Reorder the terms.
e^{\left(-e\right)k}=\frac{264}{4009}
Use the rules of exponents and logarithms to solve the equation.
\log(e^{\left(-e\right)k})=\log(\frac{264}{4009})
Take the logarithm of both sides of the equation.
\left(-e\right)k\log(e)=\log(\frac{264}{4009})
The logarithm of a number raised to a power is the power times the logarithm of the number.
\left(-e\right)k=\frac{\log(\frac{264}{4009})}{\log(e)}
Divide both sides by \log(e).
\left(-e\right)k=\log_{e}\left(\frac{264}{4009}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
k=\frac{\ln(\frac{264}{4009})}{-e}
Divide both sides by -e.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}