Evaluate
148
Factor
2^{2}\times 37
Share
Copied to clipboard
\frac{39\times 148}{149}+148\times \frac{86}{149}+48\times \frac{74}{149}
Express 39\times \frac{148}{149} as a single fraction.
\frac{5772}{149}+148\times \frac{86}{149}+48\times \frac{74}{149}
Multiply 39 and 148 to get 5772.
\frac{5772}{149}+\frac{148\times 86}{149}+48\times \frac{74}{149}
Express 148\times \frac{86}{149} as a single fraction.
\frac{5772}{149}+\frac{12728}{149}+48\times \frac{74}{149}
Multiply 148 and 86 to get 12728.
\frac{5772+12728}{149}+48\times \frac{74}{149}
Since \frac{5772}{149} and \frac{12728}{149} have the same denominator, add them by adding their numerators.
\frac{18500}{149}+48\times \frac{74}{149}
Add 5772 and 12728 to get 18500.
\frac{18500}{149}+\frac{48\times 74}{149}
Express 48\times \frac{74}{149} as a single fraction.
\frac{18500}{149}+\frac{3552}{149}
Multiply 48 and 74 to get 3552.
\frac{18500+3552}{149}
Since \frac{18500}{149} and \frac{3552}{149} have the same denominator, add them by adding their numerators.
\frac{22052}{149}
Add 18500 and 3552 to get 22052.
148
Divide 22052 by 149 to get 148.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}