Evaluate
315
Factor
3^{2}\times 5\times 7
Share
Copied to clipboard
39\left(\frac{22}{143}+\frac{13}{143}\right)\times 33
Least common multiple of 13 and 11 is 143. Convert \frac{2}{13} and \frac{1}{11} to fractions with denominator 143.
39\times \frac{22+13}{143}\times 33
Since \frac{22}{143} and \frac{13}{143} have the same denominator, add them by adding their numerators.
39\times \frac{35}{143}\times 33
Add 22 and 13 to get 35.
\frac{39\times 35}{143}\times 33
Express 39\times \frac{35}{143} as a single fraction.
\frac{1365}{143}\times 33
Multiply 39 and 35 to get 1365.
\frac{105}{11}\times 33
Reduce the fraction \frac{1365}{143} to lowest terms by extracting and canceling out 13.
\frac{105\times 33}{11}
Express \frac{105}{11}\times 33 as a single fraction.
\frac{3465}{11}
Multiply 105 and 33 to get 3465.
315
Divide 3465 by 11 to get 315.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}