Solve for b
b=-\frac{\sqrt{6}\left(a^{2}-1131x\right)}{108}
x\neq 0
Solve for a (complex solution)
a=-\sqrt{-18\sqrt{6}b+1131x}
a=\sqrt{-18\sqrt{6}b+1131x}\text{, }x\neq 0
Solve for a
a=\sqrt{-18\sqrt{6}b+1131x}
a=-\sqrt{-18\sqrt{6}b+1131x}\text{, }b\leq \frac{377\sqrt{6}x}{36}\text{ and }x\neq 0
Graph
Share
Copied to clipboard
1131x=a^{2}+b\sqrt{3\times 9^{2}\times 8}
Multiply both sides of the equation by 29x.
1131x=a^{2}+b\sqrt{3\times 81\times 8}
Calculate 9 to the power of 2 and get 81.
1131x=a^{2}+b\sqrt{243\times 8}
Multiply 3 and 81 to get 243.
1131x=a^{2}+b\sqrt{1944}
Multiply 243 and 8 to get 1944.
1131x=a^{2}+b\times 18\sqrt{6}
Factor 1944=18^{2}\times 6. Rewrite the square root of the product \sqrt{18^{2}\times 6} as the product of square roots \sqrt{18^{2}}\sqrt{6}. Take the square root of 18^{2}.
a^{2}+b\times 18\sqrt{6}=1131x
Swap sides so that all variable terms are on the left hand side.
b\times 18\sqrt{6}=1131x-a^{2}
Subtract a^{2} from both sides.
18\sqrt{6}b=1131x-a^{2}
The equation is in standard form.
\frac{18\sqrt{6}b}{18\sqrt{6}}=\frac{1131x-a^{2}}{18\sqrt{6}}
Divide both sides by 18\sqrt{6}.
b=\frac{1131x-a^{2}}{18\sqrt{6}}
Dividing by 18\sqrt{6} undoes the multiplication by 18\sqrt{6}.
b=\frac{\sqrt{6}\left(1131x-a^{2}\right)}{108}
Divide 1131x-a^{2} by 18\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}