Evaluate
\frac{387}{161}\approx 2.403726708
Factor
\frac{3 ^ {2} \cdot 43}{7 \cdot 23} = 2\frac{65}{161} = 2.4037267080745344
Share
Copied to clipboard
\begin{array}{l}\phantom{161)}\phantom{1}\\161\overline{)387}\\\end{array}
Use the 1^{st} digit 3 from dividend 387
\begin{array}{l}\phantom{161)}0\phantom{2}\\161\overline{)387}\\\end{array}
Since 3 is less than 161, use the next digit 8 from dividend 387 and add 0 to the quotient
\begin{array}{l}\phantom{161)}0\phantom{3}\\161\overline{)387}\\\end{array}
Use the 2^{nd} digit 8 from dividend 387
\begin{array}{l}\phantom{161)}00\phantom{4}\\161\overline{)387}\\\end{array}
Since 38 is less than 161, use the next digit 7 from dividend 387 and add 0 to the quotient
\begin{array}{l}\phantom{161)}00\phantom{5}\\161\overline{)387}\\\end{array}
Use the 3^{rd} digit 7 from dividend 387
\begin{array}{l}\phantom{161)}002\phantom{6}\\161\overline{)387}\\\phantom{161)}\underline{\phantom{}322\phantom{}}\\\phantom{161)9}65\\\end{array}
Find closest multiple of 161 to 387. We see that 2 \times 161 = 322 is the nearest. Now subtract 322 from 387 to get reminder 65. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }65
Since 65 is less than 161, stop the division. The reminder is 65. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}