Solve for x
x = \frac{\sqrt{1541} - 5}{4} \approx 8.563893213
x=\frac{-\sqrt{1541}-5}{4}\approx -11.063893213
Graph
Share
Copied to clipboard
385=4x^{2}+10x+6
Use the distributive property to multiply 2x+2 by 2x+3 and combine like terms.
4x^{2}+10x+6=385
Swap sides so that all variable terms are on the left hand side.
4x^{2}+10x+6-385=0
Subtract 385 from both sides.
4x^{2}+10x-379=0
Subtract 385 from 6 to get -379.
x=\frac{-10±\sqrt{10^{2}-4\times 4\left(-379\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 10 for b, and -379 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 4\left(-379\right)}}{2\times 4}
Square 10.
x=\frac{-10±\sqrt{100-16\left(-379\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-10±\sqrt{100+6064}}{2\times 4}
Multiply -16 times -379.
x=\frac{-10±\sqrt{6164}}{2\times 4}
Add 100 to 6064.
x=\frac{-10±2\sqrt{1541}}{2\times 4}
Take the square root of 6164.
x=\frac{-10±2\sqrt{1541}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{1541}-10}{8}
Now solve the equation x=\frac{-10±2\sqrt{1541}}{8} when ± is plus. Add -10 to 2\sqrt{1541}.
x=\frac{\sqrt{1541}-5}{4}
Divide -10+2\sqrt{1541} by 8.
x=\frac{-2\sqrt{1541}-10}{8}
Now solve the equation x=\frac{-10±2\sqrt{1541}}{8} when ± is minus. Subtract 2\sqrt{1541} from -10.
x=\frac{-\sqrt{1541}-5}{4}
Divide -10-2\sqrt{1541} by 8.
x=\frac{\sqrt{1541}-5}{4} x=\frac{-\sqrt{1541}-5}{4}
The equation is now solved.
385=4x^{2}+10x+6
Use the distributive property to multiply 2x+2 by 2x+3 and combine like terms.
4x^{2}+10x+6=385
Swap sides so that all variable terms are on the left hand side.
4x^{2}+10x=385-6
Subtract 6 from both sides.
4x^{2}+10x=379
Subtract 6 from 385 to get 379.
\frac{4x^{2}+10x}{4}=\frac{379}{4}
Divide both sides by 4.
x^{2}+\frac{10}{4}x=\frac{379}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{5}{2}x=\frac{379}{4}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{379}{4}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{379}{4}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{1541}{16}
Add \frac{379}{4} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=\frac{1541}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{1541}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{\sqrt{1541}}{4} x+\frac{5}{4}=-\frac{\sqrt{1541}}{4}
Simplify.
x=\frac{\sqrt{1541}-5}{4} x=\frac{-\sqrt{1541}-5}{4}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}