Evaluate
\frac{8}{5}=1.6
Factor
\frac{2 ^ {3}}{5} = 1\frac{3}{5} = 1.6
Share
Copied to clipboard
\begin{array}{l}\phantom{2400)}\phantom{1}\\2400\overline{)3840}\\\end{array}
Use the 1^{st} digit 3 from dividend 3840
\begin{array}{l}\phantom{2400)}0\phantom{2}\\2400\overline{)3840}\\\end{array}
Since 3 is less than 2400, use the next digit 8 from dividend 3840 and add 0 to the quotient
\begin{array}{l}\phantom{2400)}0\phantom{3}\\2400\overline{)3840}\\\end{array}
Use the 2^{nd} digit 8 from dividend 3840
\begin{array}{l}\phantom{2400)}00\phantom{4}\\2400\overline{)3840}\\\end{array}
Since 38 is less than 2400, use the next digit 4 from dividend 3840 and add 0 to the quotient
\begin{array}{l}\phantom{2400)}00\phantom{5}\\2400\overline{)3840}\\\end{array}
Use the 3^{rd} digit 4 from dividend 3840
\begin{array}{l}\phantom{2400)}000\phantom{6}\\2400\overline{)3840}\\\end{array}
Since 384 is less than 2400, use the next digit 0 from dividend 3840 and add 0 to the quotient
\begin{array}{l}\phantom{2400)}000\phantom{7}\\2400\overline{)3840}\\\end{array}
Use the 4^{th} digit 0 from dividend 3840
\begin{array}{l}\phantom{2400)}0001\phantom{8}\\2400\overline{)3840}\\\phantom{2400)}\underline{\phantom{}2400\phantom{}}\\\phantom{2400)}1440\\\end{array}
Find closest multiple of 2400 to 3840. We see that 1 \times 2400 = 2400 is the nearest. Now subtract 2400 from 3840 to get reminder 1440. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1440
Since 1440 is less than 2400, stop the division. The reminder is 1440. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}