Evaluate
\frac{48}{25}=1.92
Factor
\frac{2 ^ {4} \cdot 3}{5 ^ {2}} = 1\frac{23}{25} = 1.92
Share
Copied to clipboard
\begin{array}{l}\phantom{200)}\phantom{1}\\200\overline{)384}\\\end{array}
Use the 1^{st} digit 3 from dividend 384
\begin{array}{l}\phantom{200)}0\phantom{2}\\200\overline{)384}\\\end{array}
Since 3 is less than 200, use the next digit 8 from dividend 384 and add 0 to the quotient
\begin{array}{l}\phantom{200)}0\phantom{3}\\200\overline{)384}\\\end{array}
Use the 2^{nd} digit 8 from dividend 384
\begin{array}{l}\phantom{200)}00\phantom{4}\\200\overline{)384}\\\end{array}
Since 38 is less than 200, use the next digit 4 from dividend 384 and add 0 to the quotient
\begin{array}{l}\phantom{200)}00\phantom{5}\\200\overline{)384}\\\end{array}
Use the 3^{rd} digit 4 from dividend 384
\begin{array}{l}\phantom{200)}001\phantom{6}\\200\overline{)384}\\\phantom{200)}\underline{\phantom{}200\phantom{}}\\\phantom{200)}184\\\end{array}
Find closest multiple of 200 to 384. We see that 1 \times 200 = 200 is the nearest. Now subtract 200 from 384 to get reminder 184. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }184
Since 184 is less than 200, stop the division. The reminder is 184. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}