Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)384}\\\end{array}
Use the 1^{st} digit 3 from dividend 384
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)384}\\\end{array}
Since 3 is less than 48, use the next digit 8 from dividend 384 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)384}\\\end{array}
Use the 2^{nd} digit 8 from dividend 384
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)384}\\\end{array}
Since 38 is less than 48, use the next digit 4 from dividend 384 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)384}\\\end{array}
Use the 3^{rd} digit 4 from dividend 384
\begin{array}{l}\phantom{48)}008\phantom{6}\\48\overline{)384}\\\phantom{48)}\underline{\phantom{}384\phantom{}}\\\phantom{48)999}0\\\end{array}
Find closest multiple of 48 to 384. We see that 8 \times 48 = 384 is the nearest. Now subtract 384 from 384 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 48, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}