Solve for x
x = \frac{\sqrt{53046249} - 2943}{250} \approx 17.361142364
x=\frac{-\sqrt{53046249}-2943}{250}\approx -40.905142364
Graph
Share
Copied to clipboard
3830.7=3\times 9.81\left(100+x\right)+0.5\times 2.5x^{2}
Multiply 0.2 and 15 to get 3.
3830.7=29.43\left(100+x\right)+0.5\times 2.5x^{2}
Multiply 3 and 9.81 to get 29.43.
3830.7=2943+29.43x+0.5\times 2.5x^{2}
Use the distributive property to multiply 29.43 by 100+x.
3830.7=2943+29.43x+1.25x^{2}
Multiply 0.5 and 2.5 to get 1.25.
2943+29.43x+1.25x^{2}=3830.7
Swap sides so that all variable terms are on the left hand side.
2943+29.43x+1.25x^{2}-3830.7=0
Subtract 3830.7 from both sides.
-887.7+29.43x+1.25x^{2}=0
Subtract 3830.7 from 2943 to get -887.7.
1.25x^{2}+29.43x-887.7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-29.43±\sqrt{29.43^{2}-4\times 1.25\left(-887.7\right)}}{2\times 1.25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.25 for a, 29.43 for b, and -887.7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-29.43±\sqrt{866.1249-4\times 1.25\left(-887.7\right)}}{2\times 1.25}
Square 29.43 by squaring both the numerator and the denominator of the fraction.
x=\frac{-29.43±\sqrt{866.1249-5\left(-887.7\right)}}{2\times 1.25}
Multiply -4 times 1.25.
x=\frac{-29.43±\sqrt{866.1249+4438.5}}{2\times 1.25}
Multiply -5 times -887.7.
x=\frac{-29.43±\sqrt{5304.6249}}{2\times 1.25}
Add 866.1249 to 4438.5 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-29.43±\frac{\sqrt{53046249}}{100}}{2\times 1.25}
Take the square root of 5304.6249.
x=\frac{-29.43±\frac{\sqrt{53046249}}{100}}{2.5}
Multiply 2 times 1.25.
x=\frac{\sqrt{53046249}-2943}{2.5\times 100}
Now solve the equation x=\frac{-29.43±\frac{\sqrt{53046249}}{100}}{2.5} when ± is plus. Add -29.43 to \frac{\sqrt{53046249}}{100}.
x=\frac{\sqrt{53046249}-2943}{250}
Divide \frac{-2943+\sqrt{53046249}}{100} by 2.5 by multiplying \frac{-2943+\sqrt{53046249}}{100} by the reciprocal of 2.5.
x=\frac{-\sqrt{53046249}-2943}{2.5\times 100}
Now solve the equation x=\frac{-29.43±\frac{\sqrt{53046249}}{100}}{2.5} when ± is minus. Subtract \frac{\sqrt{53046249}}{100} from -29.43.
x=\frac{-\sqrt{53046249}-2943}{250}
Divide \frac{-2943-\sqrt{53046249}}{100} by 2.5 by multiplying \frac{-2943-\sqrt{53046249}}{100} by the reciprocal of 2.5.
x=\frac{\sqrt{53046249}-2943}{250} x=\frac{-\sqrt{53046249}-2943}{250}
The equation is now solved.
3830.7=3\times 9.81\left(100+x\right)+0.5\times 2.5x^{2}
Multiply 0.2 and 15 to get 3.
3830.7=29.43\left(100+x\right)+0.5\times 2.5x^{2}
Multiply 3 and 9.81 to get 29.43.
3830.7=2943+29.43x+0.5\times 2.5x^{2}
Use the distributive property to multiply 29.43 by 100+x.
3830.7=2943+29.43x+1.25x^{2}
Multiply 0.5 and 2.5 to get 1.25.
2943+29.43x+1.25x^{2}=3830.7
Swap sides so that all variable terms are on the left hand side.
29.43x+1.25x^{2}=3830.7-2943
Subtract 2943 from both sides.
29.43x+1.25x^{2}=887.7
Subtract 2943 from 3830.7 to get 887.7.
1.25x^{2}+29.43x=887.7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1.25x^{2}+29.43x}{1.25}=\frac{887.7}{1.25}
Divide both sides of the equation by 1.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{29.43}{1.25}x=\frac{887.7}{1.25}
Dividing by 1.25 undoes the multiplication by 1.25.
x^{2}+23.544x=\frac{887.7}{1.25}
Divide 29.43 by 1.25 by multiplying 29.43 by the reciprocal of 1.25.
x^{2}+23.544x=710.16
Divide 887.7 by 1.25 by multiplying 887.7 by the reciprocal of 1.25.
x^{2}+23.544x+11.772^{2}=710.16+11.772^{2}
Divide 23.544, the coefficient of the x term, by 2 to get 11.772. Then add the square of 11.772 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+23.544x+138.579984=710.16+138.579984
Square 11.772 by squaring both the numerator and the denominator of the fraction.
x^{2}+23.544x+138.579984=848.739984
Add 710.16 to 138.579984 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+11.772\right)^{2}=848.739984
Factor x^{2}+23.544x+138.579984. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+11.772\right)^{2}}=\sqrt{848.739984}
Take the square root of both sides of the equation.
x+11.772=\frac{\sqrt{53046249}}{250} x+11.772=-\frac{\sqrt{53046249}}{250}
Simplify.
x=\frac{\sqrt{53046249}-2943}{250} x=\frac{-\sqrt{53046249}-2943}{250}
Subtract 11.772 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}