Evaluate
\frac{382}{193}\approx 1.979274611
Factor
\frac{2 \cdot 191}{193} = 1\frac{189}{193} = 1.9792746113989637
Share
Copied to clipboard
\begin{array}{l}\phantom{193)}\phantom{1}\\193\overline{)382}\\\end{array}
Use the 1^{st} digit 3 from dividend 382
\begin{array}{l}\phantom{193)}0\phantom{2}\\193\overline{)382}\\\end{array}
Since 3 is less than 193, use the next digit 8 from dividend 382 and add 0 to the quotient
\begin{array}{l}\phantom{193)}0\phantom{3}\\193\overline{)382}\\\end{array}
Use the 2^{nd} digit 8 from dividend 382
\begin{array}{l}\phantom{193)}00\phantom{4}\\193\overline{)382}\\\end{array}
Since 38 is less than 193, use the next digit 2 from dividend 382 and add 0 to the quotient
\begin{array}{l}\phantom{193)}00\phantom{5}\\193\overline{)382}\\\end{array}
Use the 3^{rd} digit 2 from dividend 382
\begin{array}{l}\phantom{193)}001\phantom{6}\\193\overline{)382}\\\phantom{193)}\underline{\phantom{}193\phantom{}}\\\phantom{193)}189\\\end{array}
Find closest multiple of 193 to 382. We see that 1 \times 193 = 193 is the nearest. Now subtract 193 from 382 to get reminder 189. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }189
Since 189 is less than 193, stop the division. The reminder is 189. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}