Solve for x
x = \frac{2 \sqrt{191}}{3} \approx 9.213516641
x = -\frac{2 \sqrt{191}}{3} \approx -9.213516641
Graph
Share
Copied to clipboard
382=4.5x^{2}
Multiply 0.5 and 9 to get 4.5.
4.5x^{2}=382
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{382}{4.5}
Divide both sides by 4.5.
x^{2}=\frac{3820}{45}
Expand \frac{382}{4.5} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{764}{9}
Reduce the fraction \frac{3820}{45} to lowest terms by extracting and canceling out 5.
x=\frac{2\sqrt{191}}{3} x=-\frac{2\sqrt{191}}{3}
Take the square root of both sides of the equation.
382=4.5x^{2}
Multiply 0.5 and 9 to get 4.5.
4.5x^{2}=382
Swap sides so that all variable terms are on the left hand side.
4.5x^{2}-382=0
Subtract 382 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 4.5\left(-382\right)}}{2\times 4.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.5 for a, 0 for b, and -382 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4.5\left(-382\right)}}{2\times 4.5}
Square 0.
x=\frac{0±\sqrt{-18\left(-382\right)}}{2\times 4.5}
Multiply -4 times 4.5.
x=\frac{0±\sqrt{6876}}{2\times 4.5}
Multiply -18 times -382.
x=\frac{0±6\sqrt{191}}{2\times 4.5}
Take the square root of 6876.
x=\frac{0±6\sqrt{191}}{9}
Multiply 2 times 4.5.
x=\frac{2\sqrt{191}}{3}
Now solve the equation x=\frac{0±6\sqrt{191}}{9} when ± is plus.
x=-\frac{2\sqrt{191}}{3}
Now solve the equation x=\frac{0±6\sqrt{191}}{9} when ± is minus.
x=\frac{2\sqrt{191}}{3} x=-\frac{2\sqrt{191}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}