Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

382=4.5x^{2}
Multiply 0.5 and 9 to get 4.5.
4.5x^{2}=382
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{382}{4.5}
Divide both sides by 4.5.
x^{2}=\frac{3820}{45}
Expand \frac{382}{4.5} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{764}{9}
Reduce the fraction \frac{3820}{45} to lowest terms by extracting and canceling out 5.
x=\frac{2\sqrt{191}}{3} x=-\frac{2\sqrt{191}}{3}
Take the square root of both sides of the equation.
382=4.5x^{2}
Multiply 0.5 and 9 to get 4.5.
4.5x^{2}=382
Swap sides so that all variable terms are on the left hand side.
4.5x^{2}-382=0
Subtract 382 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 4.5\left(-382\right)}}{2\times 4.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.5 for a, 0 for b, and -382 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4.5\left(-382\right)}}{2\times 4.5}
Square 0.
x=\frac{0±\sqrt{-18\left(-382\right)}}{2\times 4.5}
Multiply -4 times 4.5.
x=\frac{0±\sqrt{6876}}{2\times 4.5}
Multiply -18 times -382.
x=\frac{0±6\sqrt{191}}{2\times 4.5}
Take the square root of 6876.
x=\frac{0±6\sqrt{191}}{9}
Multiply 2 times 4.5.
x=\frac{2\sqrt{191}}{3}
Now solve the equation x=\frac{0±6\sqrt{191}}{9} when ± is plus.
x=-\frac{2\sqrt{191}}{3}
Now solve the equation x=\frac{0±6\sqrt{191}}{9} when ± is minus.
x=\frac{2\sqrt{191}}{3} x=-\frac{2\sqrt{191}}{3}
The equation is now solved.