Solve for t
t=0.75
Share
Copied to clipboard
\frac{38080}{28000}=1+0.48t
Divide both sides by 28000.
\frac{34}{25}=1+0.48t
Reduce the fraction \frac{38080}{28000} to lowest terms by extracting and canceling out 1120.
1+0.48t=\frac{34}{25}
Swap sides so that all variable terms are on the left hand side.
0.48t=\frac{34}{25}-1
Subtract 1 from both sides.
0.48t=\frac{34}{25}-\frac{25}{25}
Convert 1 to fraction \frac{25}{25}.
0.48t=\frac{34-25}{25}
Since \frac{34}{25} and \frac{25}{25} have the same denominator, subtract them by subtracting their numerators.
0.48t=\frac{9}{25}
Subtract 25 from 34 to get 9.
t=\frac{\frac{9}{25}}{0.48}
Divide both sides by 0.48.
t=\frac{9}{25\times 0.48}
Express \frac{\frac{9}{25}}{0.48} as a single fraction.
t=\frac{9}{12}
Multiply 25 and 0.48 to get 12.
t=\frac{3}{4}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}