Evaluate
\frac{95}{6}\approx 15.833333333
Factor
\frac{5 \cdot 19}{2 \cdot 3} = 15\frac{5}{6} = 15.833333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)380}\\\end{array}
Use the 1^{st} digit 3 from dividend 380
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)380}\\\end{array}
Since 3 is less than 24, use the next digit 8 from dividend 380 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)380}\\\end{array}
Use the 2^{nd} digit 8 from dividend 380
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)380}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}14\\\end{array}
Find closest multiple of 24 to 38. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 38 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)380}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}140\\\end{array}
Use the 3^{rd} digit 0 from dividend 380
\begin{array}{l}\phantom{24)}015\phantom{6}\\24\overline{)380}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}140\\\phantom{24)}\underline{\phantom{}120\phantom{}}\\\phantom{24)9}20\\\end{array}
Find closest multiple of 24 to 140. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 140 to get reminder 20. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }20
Since 20 is less than 24, stop the division. The reminder is 20. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}