Evaluate
\frac{95}{58}\approx 1.637931034
Factor
\frac{5 \cdot 19}{2 \cdot 29} = 1\frac{37}{58} = 1.6379310344827587
Share
Copied to clipboard
\begin{array}{l}\phantom{232)}\phantom{1}\\232\overline{)380}\\\end{array}
Use the 1^{st} digit 3 from dividend 380
\begin{array}{l}\phantom{232)}0\phantom{2}\\232\overline{)380}\\\end{array}
Since 3 is less than 232, use the next digit 8 from dividend 380 and add 0 to the quotient
\begin{array}{l}\phantom{232)}0\phantom{3}\\232\overline{)380}\\\end{array}
Use the 2^{nd} digit 8 from dividend 380
\begin{array}{l}\phantom{232)}00\phantom{4}\\232\overline{)380}\\\end{array}
Since 38 is less than 232, use the next digit 0 from dividend 380 and add 0 to the quotient
\begin{array}{l}\phantom{232)}00\phantom{5}\\232\overline{)380}\\\end{array}
Use the 3^{rd} digit 0 from dividend 380
\begin{array}{l}\phantom{232)}001\phantom{6}\\232\overline{)380}\\\phantom{232)}\underline{\phantom{}232\phantom{}}\\\phantom{232)}148\\\end{array}
Find closest multiple of 232 to 380. We see that 1 \times 232 = 232 is the nearest. Now subtract 232 from 380 to get reminder 148. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }148
Since 148 is less than 232, stop the division. The reminder is 148. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}