Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

38706x^{2}-41070x+902.7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-41070\right)±\sqrt{\left(-41070\right)^{2}-4\times 38706\times 902.7}}{2\times 38706}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 38706 for a, -41070 for b, and 902.7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-41070\right)±\sqrt{1686744900-4\times 38706\times 902.7}}{2\times 38706}
Square -41070.
x=\frac{-\left(-41070\right)±\sqrt{1686744900-154824\times 902.7}}{2\times 38706}
Multiply -4 times 38706.
x=\frac{-\left(-41070\right)±\sqrt{1686744900-139759624.8}}{2\times 38706}
Multiply -154824 times 902.7.
x=\frac{-\left(-41070\right)±\sqrt{1546985275.2}}{2\times 38706}
Add 1686744900 to -139759624.8.
x=\frac{-\left(-41070\right)±\frac{6\sqrt{1074295330}}{5}}{2\times 38706}
Take the square root of 1546985275.2.
x=\frac{41070±\frac{6\sqrt{1074295330}}{5}}{2\times 38706}
The opposite of -41070 is 41070.
x=\frac{41070±\frac{6\sqrt{1074295330}}{5}}{77412}
Multiply 2 times 38706.
x=\frac{\frac{6\sqrt{1074295330}}{5}+41070}{77412}
Now solve the equation x=\frac{41070±\frac{6\sqrt{1074295330}}{5}}{77412} when ± is plus. Add 41070 to \frac{6\sqrt{1074295330}}{5}.
x=\frac{\sqrt{1074295330}}{64510}+\frac{6845}{12902}
Divide 41070+\frac{6\sqrt{1074295330}}{5} by 77412.
x=\frac{-\frac{6\sqrt{1074295330}}{5}+41070}{77412}
Now solve the equation x=\frac{41070±\frac{6\sqrt{1074295330}}{5}}{77412} when ± is minus. Subtract \frac{6\sqrt{1074295330}}{5} from 41070.
x=-\frac{\sqrt{1074295330}}{64510}+\frac{6845}{12902}
Divide 41070-\frac{6\sqrt{1074295330}}{5} by 77412.
x=\frac{\sqrt{1074295330}}{64510}+\frac{6845}{12902} x=-\frac{\sqrt{1074295330}}{64510}+\frac{6845}{12902}
The equation is now solved.
38706x^{2}-41070x+902.7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
38706x^{2}-41070x+902.7-902.7=-902.7
Subtract 902.7 from both sides of the equation.
38706x^{2}-41070x=-902.7
Subtracting 902.7 from itself leaves 0.
\frac{38706x^{2}-41070x}{38706}=-\frac{902.7}{38706}
Divide both sides by 38706.
x^{2}+\left(-\frac{41070}{38706}\right)x=-\frac{902.7}{38706}
Dividing by 38706 undoes the multiplication by 38706.
x^{2}-\frac{6845}{6451}x=-\frac{902.7}{38706}
Reduce the fraction \frac{-41070}{38706} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{6845}{6451}x=-\frac{3009}{129020}
Divide -902.7 by 38706.
x^{2}-\frac{6845}{6451}x+\left(-\frac{6845}{12902}\right)^{2}=-\frac{3009}{129020}+\left(-\frac{6845}{12902}\right)^{2}
Divide -\frac{6845}{6451}, the coefficient of the x term, by 2 to get -\frac{6845}{12902}. Then add the square of -\frac{6845}{12902} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6845}{6451}x+\frac{46854025}{166461604}=-\frac{3009}{129020}+\frac{46854025}{166461604}
Square -\frac{6845}{12902} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6845}{6451}x+\frac{46854025}{166461604}=\frac{107429533}{416154010}
Add -\frac{3009}{129020} to \frac{46854025}{166461604} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{6845}{12902}\right)^{2}=\frac{107429533}{416154010}
Factor x^{2}-\frac{6845}{6451}x+\frac{46854025}{166461604}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6845}{12902}\right)^{2}}=\sqrt{\frac{107429533}{416154010}}
Take the square root of both sides of the equation.
x-\frac{6845}{12902}=\frac{\sqrt{1074295330}}{64510} x-\frac{6845}{12902}=-\frac{\sqrt{1074295330}}{64510}
Simplify.
x=\frac{\sqrt{1074295330}}{64510}+\frac{6845}{12902} x=-\frac{\sqrt{1074295330}}{64510}+\frac{6845}{12902}
Add \frac{6845}{12902} to both sides of the equation.