Solve for g
g = -\frac{44}{19} = -2\frac{6}{19} \approx -2.315789474
g=0
Share
Copied to clipboard
g\left(38g+88\right)=0
Factor out g.
g=0 g=-\frac{44}{19}
To find equation solutions, solve g=0 and 38g+88=0.
38g^{2}+88g=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
g=\frac{-88±\sqrt{88^{2}}}{2\times 38}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 38 for a, 88 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
g=\frac{-88±88}{2\times 38}
Take the square root of 88^{2}.
g=\frac{-88±88}{76}
Multiply 2 times 38.
g=\frac{0}{76}
Now solve the equation g=\frac{-88±88}{76} when ± is plus. Add -88 to 88.
g=0
Divide 0 by 76.
g=-\frac{176}{76}
Now solve the equation g=\frac{-88±88}{76} when ± is minus. Subtract 88 from -88.
g=-\frac{44}{19}
Reduce the fraction \frac{-176}{76} to lowest terms by extracting and canceling out 4.
g=0 g=-\frac{44}{19}
The equation is now solved.
38g^{2}+88g=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{38g^{2}+88g}{38}=\frac{0}{38}
Divide both sides by 38.
g^{2}+\frac{88}{38}g=\frac{0}{38}
Dividing by 38 undoes the multiplication by 38.
g^{2}+\frac{44}{19}g=\frac{0}{38}
Reduce the fraction \frac{88}{38} to lowest terms by extracting and canceling out 2.
g^{2}+\frac{44}{19}g=0
Divide 0 by 38.
g^{2}+\frac{44}{19}g+\left(\frac{22}{19}\right)^{2}=\left(\frac{22}{19}\right)^{2}
Divide \frac{44}{19}, the coefficient of the x term, by 2 to get \frac{22}{19}. Then add the square of \frac{22}{19} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
g^{2}+\frac{44}{19}g+\frac{484}{361}=\frac{484}{361}
Square \frac{22}{19} by squaring both the numerator and the denominator of the fraction.
\left(g+\frac{22}{19}\right)^{2}=\frac{484}{361}
Factor g^{2}+\frac{44}{19}g+\frac{484}{361}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(g+\frac{22}{19}\right)^{2}}=\sqrt{\frac{484}{361}}
Take the square root of both sides of the equation.
g+\frac{22}{19}=\frac{22}{19} g+\frac{22}{19}=-\frac{22}{19}
Simplify.
g=0 g=-\frac{44}{19}
Subtract \frac{22}{19} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}