Evaluate
\frac{3792}{1217}\approx 3.115858669
Factor
\frac{2 ^ {4} \cdot 3 \cdot 79}{1217} = 3\frac{141}{1217} = 3.115858668857847
Share
Copied to clipboard
\begin{array}{l}\phantom{1217)}\phantom{1}\\1217\overline{)3792}\\\end{array}
Use the 1^{st} digit 3 from dividend 3792
\begin{array}{l}\phantom{1217)}0\phantom{2}\\1217\overline{)3792}\\\end{array}
Since 3 is less than 1217, use the next digit 7 from dividend 3792 and add 0 to the quotient
\begin{array}{l}\phantom{1217)}0\phantom{3}\\1217\overline{)3792}\\\end{array}
Use the 2^{nd} digit 7 from dividend 3792
\begin{array}{l}\phantom{1217)}00\phantom{4}\\1217\overline{)3792}\\\end{array}
Since 37 is less than 1217, use the next digit 9 from dividend 3792 and add 0 to the quotient
\begin{array}{l}\phantom{1217)}00\phantom{5}\\1217\overline{)3792}\\\end{array}
Use the 3^{rd} digit 9 from dividend 3792
\begin{array}{l}\phantom{1217)}000\phantom{6}\\1217\overline{)3792}\\\end{array}
Since 379 is less than 1217, use the next digit 2 from dividend 3792 and add 0 to the quotient
\begin{array}{l}\phantom{1217)}000\phantom{7}\\1217\overline{)3792}\\\end{array}
Use the 4^{th} digit 2 from dividend 3792
\begin{array}{l}\phantom{1217)}0003\phantom{8}\\1217\overline{)3792}\\\phantom{1217)}\underline{\phantom{}3651\phantom{}}\\\phantom{1217)9}141\\\end{array}
Find closest multiple of 1217 to 3792. We see that 3 \times 1217 = 3651 is the nearest. Now subtract 3651 from 3792 to get reminder 141. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }141
Since 141 is less than 1217, stop the division. The reminder is 141. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}