Solve for x
x=-\frac{37y}{37770}-\frac{\sqrt{3}}{3777}
Solve for y
y=\frac{-37770x-10\sqrt{3}}{37}
Graph
Share
Copied to clipboard
3777x=-\sqrt{3}-3.7y
Subtract 3.7y from both sides.
3777x=-\frac{37y}{10}-\sqrt{3}
The equation is in standard form.
\frac{3777x}{3777}=\frac{-\frac{37y}{10}-\sqrt{3}}{3777}
Divide both sides by 3777.
x=\frac{-\frac{37y}{10}-\sqrt{3}}{3777}
Dividing by 3777 undoes the multiplication by 3777.
x=-\frac{37y}{37770}-\frac{\sqrt{3}}{3777}
Divide -\sqrt{3}-\frac{37y}{10} by 3777.
3.7y=-\sqrt{3}-3777x
Subtract 3777x from both sides.
3.7y=-3777x-\sqrt{3}
The equation is in standard form.
\frac{3.7y}{3.7}=\frac{-3777x-\sqrt{3}}{3.7}
Divide both sides of the equation by 3.7, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-3777x-\sqrt{3}}{3.7}
Dividing by 3.7 undoes the multiplication by 3.7.
y=\frac{-37770x-10\sqrt{3}}{37}
Divide -\sqrt{3}-3777x by 3.7 by multiplying -\sqrt{3}-3777x by the reciprocal of 3.7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}