Evaluate
\frac{377}{19}\approx 19.842105263
Factor
\frac{13 \cdot 29}{19} = 19\frac{16}{19} = 19.842105263157894
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)377}\\\end{array}
Use the 1^{st} digit 3 from dividend 377
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)377}\\\end{array}
Since 3 is less than 19, use the next digit 7 from dividend 377 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)377}\\\end{array}
Use the 2^{nd} digit 7 from dividend 377
\begin{array}{l}\phantom{19)}01\phantom{4}\\19\overline{)377}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}18\\\end{array}
Find closest multiple of 19 to 37. We see that 1 \times 19 = 19 is the nearest. Now subtract 19 from 37 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{19)}01\phantom{5}\\19\overline{)377}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}187\\\end{array}
Use the 3^{rd} digit 7 from dividend 377
\begin{array}{l}\phantom{19)}019\phantom{6}\\19\overline{)377}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)}187\\\phantom{19)}\underline{\phantom{}171\phantom{}}\\\phantom{19)9}16\\\end{array}
Find closest multiple of 19 to 187. We see that 9 \times 19 = 171 is the nearest. Now subtract 171 from 187 to get reminder 16. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }16
Since 16 is less than 19, stop the division. The reminder is 16. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}