Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

375\times 2=x\left(4+\left(x-1\right)\times 3\right)
Multiply both sides by 2.
750=x\left(4+\left(x-1\right)\times 3\right)
Multiply 375 and 2 to get 750.
750=x\left(4+3x-3\right)
Use the distributive property to multiply x-1 by 3.
750=x\left(1+3x\right)
Subtract 3 from 4 to get 1.
750=x+3x^{2}
Use the distributive property to multiply x by 1+3x.
x+3x^{2}=750
Swap sides so that all variable terms are on the left hand side.
x+3x^{2}-750=0
Subtract 750 from both sides.
3x^{2}+x-750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-750\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 1 for b, and -750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 3\left(-750\right)}}{2\times 3}
Square 1.
x=\frac{-1±\sqrt{1-12\left(-750\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-1±\sqrt{1+9000}}{2\times 3}
Multiply -12 times -750.
x=\frac{-1±\sqrt{9001}}{2\times 3}
Add 1 to 9000.
x=\frac{-1±\sqrt{9001}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{9001}-1}{6}
Now solve the equation x=\frac{-1±\sqrt{9001}}{6} when ± is plus. Add -1 to \sqrt{9001}.
x=\frac{-\sqrt{9001}-1}{6}
Now solve the equation x=\frac{-1±\sqrt{9001}}{6} when ± is minus. Subtract \sqrt{9001} from -1.
x=\frac{\sqrt{9001}-1}{6} x=\frac{-\sqrt{9001}-1}{6}
The equation is now solved.
375\times 2=x\left(4+\left(x-1\right)\times 3\right)
Multiply both sides by 2.
750=x\left(4+\left(x-1\right)\times 3\right)
Multiply 375 and 2 to get 750.
750=x\left(4+3x-3\right)
Use the distributive property to multiply x-1 by 3.
750=x\left(1+3x\right)
Subtract 3 from 4 to get 1.
750=x+3x^{2}
Use the distributive property to multiply x by 1+3x.
x+3x^{2}=750
Swap sides so that all variable terms are on the left hand side.
3x^{2}+x=750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+x}{3}=\frac{750}{3}
Divide both sides by 3.
x^{2}+\frac{1}{3}x=\frac{750}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{1}{3}x=250
Divide 750 by 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=250+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=250+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{9001}{36}
Add 250 to \frac{1}{36}.
\left(x+\frac{1}{6}\right)^{2}=\frac{9001}{36}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{9001}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{\sqrt{9001}}{6} x+\frac{1}{6}=-\frac{\sqrt{9001}}{6}
Simplify.
x=\frac{\sqrt{9001}-1}{6} x=\frac{-\sqrt{9001}-1}{6}
Subtract \frac{1}{6} from both sides of the equation.