Evaluate
\frac{20373}{40}=509.325
Factor
\frac{3 \cdot 6791}{2 ^ {3} \cdot 5} = 509\frac{13}{40} = 509.325
Share
Copied to clipboard
\frac{1875+1}{5}+\frac{93\times 2+1}{2}+41-\frac{3}{8}
Multiply 375 and 5 to get 1875.
\frac{1876}{5}+\frac{93\times 2+1}{2}+41-\frac{3}{8}
Add 1875 and 1 to get 1876.
\frac{1876}{5}+\frac{186+1}{2}+41-\frac{3}{8}
Multiply 93 and 2 to get 186.
\frac{1876}{5}+\frac{187}{2}+41-\frac{3}{8}
Add 186 and 1 to get 187.
\frac{3752}{10}+\frac{935}{10}+41-\frac{3}{8}
Least common multiple of 5 and 2 is 10. Convert \frac{1876}{5} and \frac{187}{2} to fractions with denominator 10.
\frac{3752+935}{10}+41-\frac{3}{8}
Since \frac{3752}{10} and \frac{935}{10} have the same denominator, add them by adding their numerators.
\frac{4687}{10}+41-\frac{3}{8}
Add 3752 and 935 to get 4687.
\frac{4687}{10}+\frac{410}{10}-\frac{3}{8}
Convert 41 to fraction \frac{410}{10}.
\frac{4687+410}{10}-\frac{3}{8}
Since \frac{4687}{10} and \frac{410}{10} have the same denominator, add them by adding their numerators.
\frac{5097}{10}-\frac{3}{8}
Add 4687 and 410 to get 5097.
\frac{20388}{40}-\frac{15}{40}
Least common multiple of 10 and 8 is 40. Convert \frac{5097}{10} and \frac{3}{8} to fractions with denominator 40.
\frac{20388-15}{40}
Since \frac{20388}{40} and \frac{15}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{20373}{40}
Subtract 15 from 20388 to get 20373.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}