Evaluate
\frac{375}{301}\approx 1.245847176
Factor
\frac{3 \cdot 5 ^ {3}}{7 \cdot 43} = 1\frac{74}{301} = 1.2458471760797343
Share
Copied to clipboard
\begin{array}{l}\phantom{301)}\phantom{1}\\301\overline{)375}\\\end{array}
Use the 1^{st} digit 3 from dividend 375
\begin{array}{l}\phantom{301)}0\phantom{2}\\301\overline{)375}\\\end{array}
Since 3 is less than 301, use the next digit 7 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{301)}0\phantom{3}\\301\overline{)375}\\\end{array}
Use the 2^{nd} digit 7 from dividend 375
\begin{array}{l}\phantom{301)}00\phantom{4}\\301\overline{)375}\\\end{array}
Since 37 is less than 301, use the next digit 5 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{301)}00\phantom{5}\\301\overline{)375}\\\end{array}
Use the 3^{rd} digit 5 from dividend 375
\begin{array}{l}\phantom{301)}001\phantom{6}\\301\overline{)375}\\\phantom{301)}\underline{\phantom{}301\phantom{}}\\\phantom{301)9}74\\\end{array}
Find closest multiple of 301 to 375. We see that 1 \times 301 = 301 is the nearest. Now subtract 301 from 375 to get reminder 74. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }74
Since 74 is less than 301, stop the division. The reminder is 74. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}