Evaluate
\frac{375}{22}\approx 17.045454545
Factor
\frac{3 \cdot 5 ^ {3}}{2 \cdot 11} = 17\frac{1}{22} = 17.045454545454547
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)375}\\\end{array}
Use the 1^{st} digit 3 from dividend 375
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)375}\\\end{array}
Since 3 is less than 22, use the next digit 7 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)375}\\\end{array}
Use the 2^{nd} digit 7 from dividend 375
\begin{array}{l}\phantom{22)}01\phantom{4}\\22\overline{)375}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}15\\\end{array}
Find closest multiple of 22 to 37. We see that 1 \times 22 = 22 is the nearest. Now subtract 22 from 37 to get reminder 15. Add 1 to quotient.
\begin{array}{l}\phantom{22)}01\phantom{5}\\22\overline{)375}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}155\\\end{array}
Use the 3^{rd} digit 5 from dividend 375
\begin{array}{l}\phantom{22)}017\phantom{6}\\22\overline{)375}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}155\\\phantom{22)}\underline{\phantom{}154\phantom{}}\\\phantom{22)99}1\\\end{array}
Find closest multiple of 22 to 155. We see that 7 \times 22 = 154 is the nearest. Now subtract 154 from 155 to get reminder 1. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }1
Since 1 is less than 22, stop the division. The reminder is 1. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}