Evaluate
\frac{75}{4}=18.75
Factor
\frac{3 \cdot 5 ^ {2}}{2 ^ {2}} = 18\frac{3}{4} = 18.75
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)375}\\\end{array}
Use the 1^{st} digit 3 from dividend 375
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)375}\\\end{array}
Since 3 is less than 20, use the next digit 7 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)375}\\\end{array}
Use the 2^{nd} digit 7 from dividend 375
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)375}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}17\\\end{array}
Find closest multiple of 20 to 37. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 37 to get reminder 17. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)375}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}175\\\end{array}
Use the 3^{rd} digit 5 from dividend 375
\begin{array}{l}\phantom{20)}018\phantom{6}\\20\overline{)375}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}175\\\phantom{20)}\underline{\phantom{}160\phantom{}}\\\phantom{20)9}15\\\end{array}
Find closest multiple of 20 to 175. We see that 8 \times 20 = 160 is the nearest. Now subtract 160 from 175 to get reminder 15. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }15
Since 15 is less than 20, stop the division. The reminder is 15. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}