Evaluate
\frac{15}{4}=3.75
Factor
\frac{3 \cdot 5}{2 ^ {2}} = 3\frac{3}{4} = 3.75
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)375}\\\end{array}
Use the 1^{st} digit 3 from dividend 375
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)375}\\\end{array}
Since 3 is less than 100, use the next digit 7 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)375}\\\end{array}
Use the 2^{nd} digit 7 from dividend 375
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)375}\\\end{array}
Since 37 is less than 100, use the next digit 5 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)375}\\\end{array}
Use the 3^{rd} digit 5 from dividend 375
\begin{array}{l}\phantom{100)}003\phantom{6}\\100\overline{)375}\\\phantom{100)}\underline{\phantom{}300\phantom{}}\\\phantom{100)9}75\\\end{array}
Find closest multiple of 100 to 375. We see that 3 \times 100 = 300 is the nearest. Now subtract 300 from 375 to get reminder 75. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }75
Since 75 is less than 100, stop the division. The reminder is 75. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}