Evaluate
\frac{25}{24}\approx 1.041666667
Factor
\frac{5 ^ {2}}{2 ^ {3} \cdot 3} = 1\frac{1}{24} = 1.0416666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)375}\\\end{array}
Use the 1^{st} digit 3 from dividend 375
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)375}\\\end{array}
Since 3 is less than 360, use the next digit 7 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)375}\\\end{array}
Use the 2^{nd} digit 7 from dividend 375
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)375}\\\end{array}
Since 37 is less than 360, use the next digit 5 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)375}\\\end{array}
Use the 3^{rd} digit 5 from dividend 375
\begin{array}{l}\phantom{360)}001\phantom{6}\\360\overline{)375}\\\phantom{360)}\underline{\phantom{}360\phantom{}}\\\phantom{360)9}15\\\end{array}
Find closest multiple of 360 to 375. We see that 1 \times 360 = 360 is the nearest. Now subtract 360 from 375 to get reminder 15. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }15
Since 15 is less than 360, stop the division. The reminder is 15. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}