Evaluate
\frac{125}{8}=15.625
Factor
\frac{5 ^ {3}}{2 ^ {3}} = 15\frac{5}{8} = 15.625
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)375}\\\end{array}
Use the 1^{st} digit 3 from dividend 375
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)375}\\\end{array}
Since 3 is less than 24, use the next digit 7 from dividend 375 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)375}\\\end{array}
Use the 2^{nd} digit 7 from dividend 375
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)375}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}13\\\end{array}
Find closest multiple of 24 to 37. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 37 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)375}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}135\\\end{array}
Use the 3^{rd} digit 5 from dividend 375
\begin{array}{l}\phantom{24)}015\phantom{6}\\24\overline{)375}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}135\\\phantom{24)}\underline{\phantom{}120\phantom{}}\\\phantom{24)9}15\\\end{array}
Find closest multiple of 24 to 135. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 135 to get reminder 15. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }15
Since 15 is less than 24, stop the division. The reminder is 15. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}