370c-90 \leq 1 \% +3
Solve for c
c\leq \frac{9301}{37000}
Share
Copied to clipboard
370c-90\leq \frac{1}{100}+\frac{300}{100}
Convert 3 to fraction \frac{300}{100}.
370c-90\leq \frac{1+300}{100}
Since \frac{1}{100} and \frac{300}{100} have the same denominator, add them by adding their numerators.
370c-90\leq \frac{301}{100}
Add 1 and 300 to get 301.
370c\leq \frac{301}{100}+90
Add 90 to both sides.
370c\leq \frac{301}{100}+\frac{9000}{100}
Convert 90 to fraction \frac{9000}{100}.
370c\leq \frac{301+9000}{100}
Since \frac{301}{100} and \frac{9000}{100} have the same denominator, add them by adding their numerators.
370c\leq \frac{9301}{100}
Add 301 and 9000 to get 9301.
c\leq \frac{\frac{9301}{100}}{370}
Divide both sides by 370. Since 370 is positive, the inequality direction remains the same.
c\leq \frac{9301}{100\times 370}
Express \frac{\frac{9301}{100}}{370} as a single fraction.
c\leq \frac{9301}{37000}
Multiply 100 and 370 to get 37000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}