Evaluate
\frac{1853}{207}\approx 8.951690821
Factor
\frac{17 \cdot 109}{3 ^ {2} \cdot 23} = 8\frac{197}{207} = 8.951690821256038
Share
Copied to clipboard
\begin{array}{l}\phantom{414)}\phantom{1}\\414\overline{)3706}\\\end{array}
Use the 1^{st} digit 3 from dividend 3706
\begin{array}{l}\phantom{414)}0\phantom{2}\\414\overline{)3706}\\\end{array}
Since 3 is less than 414, use the next digit 7 from dividend 3706 and add 0 to the quotient
\begin{array}{l}\phantom{414)}0\phantom{3}\\414\overline{)3706}\\\end{array}
Use the 2^{nd} digit 7 from dividend 3706
\begin{array}{l}\phantom{414)}00\phantom{4}\\414\overline{)3706}\\\end{array}
Since 37 is less than 414, use the next digit 0 from dividend 3706 and add 0 to the quotient
\begin{array}{l}\phantom{414)}00\phantom{5}\\414\overline{)3706}\\\end{array}
Use the 3^{rd} digit 0 from dividend 3706
\begin{array}{l}\phantom{414)}000\phantom{6}\\414\overline{)3706}\\\end{array}
Since 370 is less than 414, use the next digit 6 from dividend 3706 and add 0 to the quotient
\begin{array}{l}\phantom{414)}000\phantom{7}\\414\overline{)3706}\\\end{array}
Use the 4^{th} digit 6 from dividend 3706
\begin{array}{l}\phantom{414)}0008\phantom{8}\\414\overline{)3706}\\\phantom{414)}\underline{\phantom{}3312\phantom{}}\\\phantom{414)9}394\\\end{array}
Find closest multiple of 414 to 3706. We see that 8 \times 414 = 3312 is the nearest. Now subtract 3312 from 3706 to get reminder 394. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }394
Since 394 is less than 414, stop the division. The reminder is 394. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}