Evaluate
28.5
Factor
\frac{3 \cdot 19}{2} = 28\frac{1}{2} = 28.5
Share
Copied to clipboard
37.6-\frac{90+1}{10}
Multiply 9 and 10 to get 90.
37.6-\frac{91}{10}
Add 90 and 1 to get 91.
\frac{188}{5}-\frac{91}{10}
Convert decimal number 37.6 to fraction \frac{376}{10}. Reduce the fraction \frac{376}{10} to lowest terms by extracting and canceling out 2.
\frac{376}{10}-\frac{91}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{188}{5} and \frac{91}{10} to fractions with denominator 10.
\frac{376-91}{10}
Since \frac{376}{10} and \frac{91}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{285}{10}
Subtract 91 from 376 to get 285.
\frac{57}{2}
Reduce the fraction \frac{285}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}