Solve for J
J=\frac{4kyv^{2}}{25}
Solve for k
\left\{\begin{matrix}k=\frac{25J}{4yv^{2}}\text{, }&v\neq 0\text{ and }y\neq 0\\k\in \mathrm{R}\text{, }&\left(y=0\text{ or }v=0\right)\text{ and }J=0\end{matrix}\right.
Graph
Share
Copied to clipboard
37.5J=6kyv^{2}
Multiply \frac{1}{2} and 12 to get 6.
\frac{37.5J}{37.5}=\frac{6kyv^{2}}{37.5}
Divide both sides of the equation by 37.5, which is the same as multiplying both sides by the reciprocal of the fraction.
J=\frac{6kyv^{2}}{37.5}
Dividing by 37.5 undoes the multiplication by 37.5.
J=\frac{4kyv^{2}}{25}
Divide 6kyv^{2} by 37.5 by multiplying 6kyv^{2} by the reciprocal of 37.5.
37.5J=6kyv^{2}
Multiply \frac{1}{2} and 12 to get 6.
6kyv^{2}=37.5J
Swap sides so that all variable terms are on the left hand side.
6yv^{2}k=\frac{75J}{2}
The equation is in standard form.
\frac{6yv^{2}k}{6yv^{2}}=\frac{75J}{2\times 6yv^{2}}
Divide both sides by 6yv^{2}.
k=\frac{75J}{2\times 6yv^{2}}
Dividing by 6yv^{2} undoes the multiplication by 6yv^{2}.
k=\frac{25J}{4yv^{2}}
Divide \frac{75J}{2} by 6yv^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}