Solve for x
x=2
x = \frac{147}{37} = 3\frac{36}{37} \approx 3.972972973
Graph
Share
Copied to clipboard
37x^{2}-221x+294=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-221\right)±\sqrt{\left(-221\right)^{2}-4\times 37\times 294}}{2\times 37}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 37 for a, -221 for b, and 294 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-221\right)±\sqrt{48841-4\times 37\times 294}}{2\times 37}
Square -221.
x=\frac{-\left(-221\right)±\sqrt{48841-148\times 294}}{2\times 37}
Multiply -4 times 37.
x=\frac{-\left(-221\right)±\sqrt{48841-43512}}{2\times 37}
Multiply -148 times 294.
x=\frac{-\left(-221\right)±\sqrt{5329}}{2\times 37}
Add 48841 to -43512.
x=\frac{-\left(-221\right)±73}{2\times 37}
Take the square root of 5329.
x=\frac{221±73}{2\times 37}
The opposite of -221 is 221.
x=\frac{221±73}{74}
Multiply 2 times 37.
x=\frac{294}{74}
Now solve the equation x=\frac{221±73}{74} when ± is plus. Add 221 to 73.
x=\frac{147}{37}
Reduce the fraction \frac{294}{74} to lowest terms by extracting and canceling out 2.
x=\frac{148}{74}
Now solve the equation x=\frac{221±73}{74} when ± is minus. Subtract 73 from 221.
x=2
Divide 148 by 74.
x=\frac{147}{37} x=2
The equation is now solved.
37x^{2}-221x+294=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
37x^{2}-221x+294-294=-294
Subtract 294 from both sides of the equation.
37x^{2}-221x=-294
Subtracting 294 from itself leaves 0.
\frac{37x^{2}-221x}{37}=-\frac{294}{37}
Divide both sides by 37.
x^{2}-\frac{221}{37}x=-\frac{294}{37}
Dividing by 37 undoes the multiplication by 37.
x^{2}-\frac{221}{37}x+\left(-\frac{221}{74}\right)^{2}=-\frac{294}{37}+\left(-\frac{221}{74}\right)^{2}
Divide -\frac{221}{37}, the coefficient of the x term, by 2 to get -\frac{221}{74}. Then add the square of -\frac{221}{74} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{221}{37}x+\frac{48841}{5476}=-\frac{294}{37}+\frac{48841}{5476}
Square -\frac{221}{74} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{221}{37}x+\frac{48841}{5476}=\frac{5329}{5476}
Add -\frac{294}{37} to \frac{48841}{5476} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{221}{74}\right)^{2}=\frac{5329}{5476}
Factor x^{2}-\frac{221}{37}x+\frac{48841}{5476}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{221}{74}\right)^{2}}=\sqrt{\frac{5329}{5476}}
Take the square root of both sides of the equation.
x-\frac{221}{74}=\frac{73}{74} x-\frac{221}{74}=-\frac{73}{74}
Simplify.
x=\frac{147}{37} x=2
Add \frac{221}{74} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}