Evaluate
\frac{37}{24}\approx 1.541666667
Factor
\frac{37}{2 ^ {3} \cdot 3} = 1\frac{13}{24} = 1.5416666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)37}\\\end{array}
Use the 1^{st} digit 3 from dividend 37
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)37}\\\end{array}
Since 3 is less than 24, use the next digit 7 from dividend 37 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)37}\\\end{array}
Use the 2^{nd} digit 7 from dividend 37
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)37}\\\phantom{24)}\underline{\phantom{}24\phantom{}}\\\phantom{24)}13\\\end{array}
Find closest multiple of 24 to 37. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 37 to get reminder 13. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }13
Since 13 is less than 24, stop the division. The reminder is 13. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}