Evaluate
\frac{1229}{146}\approx 8.417808219
Factor
\frac{1229}{2 \cdot 73} = 8\frac{61}{146} = 8.417808219178083
Share
Copied to clipboard
\begin{array}{l}\phantom{438)}\phantom{1}\\438\overline{)3687}\\\end{array}
Use the 1^{st} digit 3 from dividend 3687
\begin{array}{l}\phantom{438)}0\phantom{2}\\438\overline{)3687}\\\end{array}
Since 3 is less than 438, use the next digit 6 from dividend 3687 and add 0 to the quotient
\begin{array}{l}\phantom{438)}0\phantom{3}\\438\overline{)3687}\\\end{array}
Use the 2^{nd} digit 6 from dividend 3687
\begin{array}{l}\phantom{438)}00\phantom{4}\\438\overline{)3687}\\\end{array}
Since 36 is less than 438, use the next digit 8 from dividend 3687 and add 0 to the quotient
\begin{array}{l}\phantom{438)}00\phantom{5}\\438\overline{)3687}\\\end{array}
Use the 3^{rd} digit 8 from dividend 3687
\begin{array}{l}\phantom{438)}000\phantom{6}\\438\overline{)3687}\\\end{array}
Since 368 is less than 438, use the next digit 7 from dividend 3687 and add 0 to the quotient
\begin{array}{l}\phantom{438)}000\phantom{7}\\438\overline{)3687}\\\end{array}
Use the 4^{th} digit 7 from dividend 3687
\begin{array}{l}\phantom{438)}0008\phantom{8}\\438\overline{)3687}\\\phantom{438)}\underline{\phantom{}3504\phantom{}}\\\phantom{438)9}183\\\end{array}
Find closest multiple of 438 to 3687. We see that 8 \times 438 = 3504 is the nearest. Now subtract 3504 from 3687 to get reminder 183. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }183
Since 183 is less than 438, stop the division. The reminder is 183. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}