Evaluate
\frac{368}{27}\approx 13.62962963
Factor
\frac{2 ^ {4} \cdot 23}{3 ^ {3}} = 13\frac{17}{27} = 13.62962962962963
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)368}\\\end{array}
Use the 1^{st} digit 3 from dividend 368
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)368}\\\end{array}
Since 3 is less than 27, use the next digit 6 from dividend 368 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)368}\\\end{array}
Use the 2^{nd} digit 6 from dividend 368
\begin{array}{l}\phantom{27)}01\phantom{4}\\27\overline{)368}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)9}9\\\end{array}
Find closest multiple of 27 to 36. We see that 1 \times 27 = 27 is the nearest. Now subtract 27 from 36 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{27)}01\phantom{5}\\27\overline{)368}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)9}98\\\end{array}
Use the 3^{rd} digit 8 from dividend 368
\begin{array}{l}\phantom{27)}013\phantom{6}\\27\overline{)368}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)9}98\\\phantom{27)}\underline{\phantom{9}81\phantom{}}\\\phantom{27)9}17\\\end{array}
Find closest multiple of 27 to 98. We see that 3 \times 27 = 81 is the nearest. Now subtract 81 from 98 to get reminder 17. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }17
Since 17 is less than 27, stop the division. The reminder is 17. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}