Evaluate
\frac{36742397}{2345}\approx 15668.399573561
Factor
\frac{36742397}{5 \cdot 7 \cdot 67} = 15668\frac{937}{2345} = 15668.399573560768
Share
Copied to clipboard
\begin{array}{l}\phantom{2345)}\phantom{1}\\2345\overline{)36742397}\\\end{array}
Use the 1^{st} digit 3 from dividend 36742397
\begin{array}{l}\phantom{2345)}0\phantom{2}\\2345\overline{)36742397}\\\end{array}
Since 3 is less than 2345, use the next digit 6 from dividend 36742397 and add 0 to the quotient
\begin{array}{l}\phantom{2345)}0\phantom{3}\\2345\overline{)36742397}\\\end{array}
Use the 2^{nd} digit 6 from dividend 36742397
\begin{array}{l}\phantom{2345)}00\phantom{4}\\2345\overline{)36742397}\\\end{array}
Since 36 is less than 2345, use the next digit 7 from dividend 36742397 and add 0 to the quotient
\begin{array}{l}\phantom{2345)}00\phantom{5}\\2345\overline{)36742397}\\\end{array}
Use the 3^{rd} digit 7 from dividend 36742397
\begin{array}{l}\phantom{2345)}000\phantom{6}\\2345\overline{)36742397}\\\end{array}
Since 367 is less than 2345, use the next digit 4 from dividend 36742397 and add 0 to the quotient
\begin{array}{l}\phantom{2345)}000\phantom{7}\\2345\overline{)36742397}\\\end{array}
Use the 4^{th} digit 4 from dividend 36742397
\begin{array}{l}\phantom{2345)}0001\phantom{8}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}1329\\\end{array}
Find closest multiple of 2345 to 3674. We see that 1 \times 2345 = 2345 is the nearest. Now subtract 2345 from 3674 to get reminder 1329. Add 1 to quotient.
\begin{array}{l}\phantom{2345)}0001\phantom{9}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}13292\\\end{array}
Use the 5^{th} digit 2 from dividend 36742397
\begin{array}{l}\phantom{2345)}00015\phantom{10}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}13292\\\phantom{2345)}\underline{\phantom{}11725\phantom{999}}\\\phantom{2345)9}1567\\\end{array}
Find closest multiple of 2345 to 13292. We see that 5 \times 2345 = 11725 is the nearest. Now subtract 11725 from 13292 to get reminder 1567. Add 5 to quotient.
\begin{array}{l}\phantom{2345)}00015\phantom{11}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}13292\\\phantom{2345)}\underline{\phantom{}11725\phantom{999}}\\\phantom{2345)9}15673\\\end{array}
Use the 6^{th} digit 3 from dividend 36742397
\begin{array}{l}\phantom{2345)}000156\phantom{12}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}13292\\\phantom{2345)}\underline{\phantom{}11725\phantom{999}}\\\phantom{2345)9}15673\\\phantom{2345)}\underline{\phantom{9}14070\phantom{99}}\\\phantom{2345)99}1603\\\end{array}
Find closest multiple of 2345 to 15673. We see that 6 \times 2345 = 14070 is the nearest. Now subtract 14070 from 15673 to get reminder 1603. Add 6 to quotient.
\begin{array}{l}\phantom{2345)}000156\phantom{13}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}13292\\\phantom{2345)}\underline{\phantom{}11725\phantom{999}}\\\phantom{2345)9}15673\\\phantom{2345)}\underline{\phantom{9}14070\phantom{99}}\\\phantom{2345)99}16039\\\end{array}
Use the 7^{th} digit 9 from dividend 36742397
\begin{array}{l}\phantom{2345)}0001566\phantom{14}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}13292\\\phantom{2345)}\underline{\phantom{}11725\phantom{999}}\\\phantom{2345)9}15673\\\phantom{2345)}\underline{\phantom{9}14070\phantom{99}}\\\phantom{2345)99}16039\\\phantom{2345)}\underline{\phantom{99}14070\phantom{9}}\\\phantom{2345)999}1969\\\end{array}
Find closest multiple of 2345 to 16039. We see that 6 \times 2345 = 14070 is the nearest. Now subtract 14070 from 16039 to get reminder 1969. Add 6 to quotient.
\begin{array}{l}\phantom{2345)}0001566\phantom{15}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}13292\\\phantom{2345)}\underline{\phantom{}11725\phantom{999}}\\\phantom{2345)9}15673\\\phantom{2345)}\underline{\phantom{9}14070\phantom{99}}\\\phantom{2345)99}16039\\\phantom{2345)}\underline{\phantom{99}14070\phantom{9}}\\\phantom{2345)999}19697\\\end{array}
Use the 8^{th} digit 7 from dividend 36742397
\begin{array}{l}\phantom{2345)}00015668\phantom{16}\\2345\overline{)36742397}\\\phantom{2345)}\underline{\phantom{}2345\phantom{9999}}\\\phantom{2345)}13292\\\phantom{2345)}\underline{\phantom{}11725\phantom{999}}\\\phantom{2345)9}15673\\\phantom{2345)}\underline{\phantom{9}14070\phantom{99}}\\\phantom{2345)99}16039\\\phantom{2345)}\underline{\phantom{99}14070\phantom{9}}\\\phantom{2345)999}19697\\\phantom{2345)}\underline{\phantom{999}18760\phantom{}}\\\phantom{2345)99999}937\\\end{array}
Find closest multiple of 2345 to 19697. We see that 8 \times 2345 = 18760 is the nearest. Now subtract 18760 from 19697 to get reminder 937. Add 8 to quotient.
\text{Quotient: }15668 \text{Reminder: }937
Since 937 is less than 2345, stop the division. The reminder is 937. The topmost line 00015668 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15668.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}