Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{612)}\phantom{1}\\612\overline{)3672}\\\end{array}
Use the 1^{st} digit 3 from dividend 3672
\begin{array}{l}\phantom{612)}0\phantom{2}\\612\overline{)3672}\\\end{array}
Since 3 is less than 612, use the next digit 6 from dividend 3672 and add 0 to the quotient
\begin{array}{l}\phantom{612)}0\phantom{3}\\612\overline{)3672}\\\end{array}
Use the 2^{nd} digit 6 from dividend 3672
\begin{array}{l}\phantom{612)}00\phantom{4}\\612\overline{)3672}\\\end{array}
Since 36 is less than 612, use the next digit 7 from dividend 3672 and add 0 to the quotient
\begin{array}{l}\phantom{612)}00\phantom{5}\\612\overline{)3672}\\\end{array}
Use the 3^{rd} digit 7 from dividend 3672
\begin{array}{l}\phantom{612)}000\phantom{6}\\612\overline{)3672}\\\end{array}
Since 367 is less than 612, use the next digit 2 from dividend 3672 and add 0 to the quotient
\begin{array}{l}\phantom{612)}000\phantom{7}\\612\overline{)3672}\\\end{array}
Use the 4^{th} digit 2 from dividend 3672
\begin{array}{l}\phantom{612)}0006\phantom{8}\\612\overline{)3672}\\\phantom{612)}\underline{\phantom{}3672\phantom{}}\\\phantom{612)9999}0\\\end{array}
Find closest multiple of 612 to 3672. We see that 6 \times 612 = 3672 is the nearest. Now subtract 3672 from 3672 to get reminder 0. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }0
Since 0 is less than 612, stop the division. The reminder is 0. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}