Evaluate
\frac{367}{20}=18.35
Factor
\frac{367}{2 ^ {2} \cdot 5} = 18\frac{7}{20} = 18.35
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)367}\\\end{array}
Use the 1^{st} digit 3 from dividend 367
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)367}\\\end{array}
Since 3 is less than 20, use the next digit 6 from dividend 367 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)367}\\\end{array}
Use the 2^{nd} digit 6 from dividend 367
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)367}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}16\\\end{array}
Find closest multiple of 20 to 36. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 36 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)367}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}167\\\end{array}
Use the 3^{rd} digit 7 from dividend 367
\begin{array}{l}\phantom{20)}018\phantom{6}\\20\overline{)367}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}167\\\phantom{20)}\underline{\phantom{}160\phantom{}}\\\phantom{20)99}7\\\end{array}
Find closest multiple of 20 to 167. We see that 8 \times 20 = 160 is the nearest. Now subtract 160 from 167 to get reminder 7. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }7
Since 7 is less than 20, stop the division. The reminder is 7. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}