Evaluate
\frac{9135730}{13}\approx 702748.461538462
Factor
\frac{2 \cdot 5 \cdot 913573}{13} = 702748\frac{6}{13} = 702748.4615384615
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)36542920}\\\end{array}
Use the 1^{st} digit 3 from dividend 36542920
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)36542920}\\\end{array}
Since 3 is less than 52, use the next digit 6 from dividend 36542920 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)36542920}\\\end{array}
Use the 2^{nd} digit 6 from dividend 36542920
\begin{array}{l}\phantom{52)}00\phantom{4}\\52\overline{)36542920}\\\end{array}
Since 36 is less than 52, use the next digit 5 from dividend 36542920 and add 0 to the quotient
\begin{array}{l}\phantom{52)}00\phantom{5}\\52\overline{)36542920}\\\end{array}
Use the 3^{rd} digit 5 from dividend 36542920
\begin{array}{l}\phantom{52)}007\phantom{6}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}1\\\end{array}
Find closest multiple of 52 to 365. We see that 7 \times 52 = 364 is the nearest. Now subtract 364 from 365 to get reminder 1. Add 7 to quotient.
\begin{array}{l}\phantom{52)}007\phantom{7}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}14\\\end{array}
Use the 4^{th} digit 4 from dividend 36542920
\begin{array}{l}\phantom{52)}0070\phantom{8}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}14\\\end{array}
Since 14 is less than 52, use the next digit 2 from dividend 36542920 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0070\phantom{9}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}142\\\end{array}
Use the 5^{th} digit 2 from dividend 36542920
\begin{array}{l}\phantom{52)}00702\phantom{10}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}142\\\phantom{52)}\underline{\phantom{99}104\phantom{999}}\\\phantom{52)999}38\\\end{array}
Find closest multiple of 52 to 142. We see that 2 \times 52 = 104 is the nearest. Now subtract 104 from 142 to get reminder 38. Add 2 to quotient.
\begin{array}{l}\phantom{52)}00702\phantom{11}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}142\\\phantom{52)}\underline{\phantom{99}104\phantom{999}}\\\phantom{52)999}389\\\end{array}
Use the 6^{th} digit 9 from dividend 36542920
\begin{array}{l}\phantom{52)}007027\phantom{12}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}142\\\phantom{52)}\underline{\phantom{99}104\phantom{999}}\\\phantom{52)999}389\\\phantom{52)}\underline{\phantom{999}364\phantom{99}}\\\phantom{52)9999}25\\\end{array}
Find closest multiple of 52 to 389. We see that 7 \times 52 = 364 is the nearest. Now subtract 364 from 389 to get reminder 25. Add 7 to quotient.
\begin{array}{l}\phantom{52)}007027\phantom{13}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}142\\\phantom{52)}\underline{\phantom{99}104\phantom{999}}\\\phantom{52)999}389\\\phantom{52)}\underline{\phantom{999}364\phantom{99}}\\\phantom{52)9999}252\\\end{array}
Use the 7^{th} digit 2 from dividend 36542920
\begin{array}{l}\phantom{52)}0070274\phantom{14}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}142\\\phantom{52)}\underline{\phantom{99}104\phantom{999}}\\\phantom{52)999}389\\\phantom{52)}\underline{\phantom{999}364\phantom{99}}\\\phantom{52)9999}252\\\phantom{52)}\underline{\phantom{9999}208\phantom{9}}\\\phantom{52)99999}44\\\end{array}
Find closest multiple of 52 to 252. We see that 4 \times 52 = 208 is the nearest. Now subtract 208 from 252 to get reminder 44. Add 4 to quotient.
\begin{array}{l}\phantom{52)}0070274\phantom{15}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}142\\\phantom{52)}\underline{\phantom{99}104\phantom{999}}\\\phantom{52)999}389\\\phantom{52)}\underline{\phantom{999}364\phantom{99}}\\\phantom{52)9999}252\\\phantom{52)}\underline{\phantom{9999}208\phantom{9}}\\\phantom{52)99999}440\\\end{array}
Use the 8^{th} digit 0 from dividend 36542920
\begin{array}{l}\phantom{52)}00702748\phantom{16}\\52\overline{)36542920}\\\phantom{52)}\underline{\phantom{}364\phantom{99999}}\\\phantom{52)99}142\\\phantom{52)}\underline{\phantom{99}104\phantom{999}}\\\phantom{52)999}389\\\phantom{52)}\underline{\phantom{999}364\phantom{99}}\\\phantom{52)9999}252\\\phantom{52)}\underline{\phantom{9999}208\phantom{9}}\\\phantom{52)99999}440\\\phantom{52)}\underline{\phantom{99999}416\phantom{}}\\\phantom{52)999999}24\\\end{array}
Find closest multiple of 52 to 440. We see that 8 \times 52 = 416 is the nearest. Now subtract 416 from 440 to get reminder 24. Add 8 to quotient.
\text{Quotient: }702748 \text{Reminder: }24
Since 24 is less than 52, stop the division. The reminder is 24. The topmost line 00702748 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 702748.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}