Solve for x (complex solution)
x=\frac{7317+\sqrt{479361511}i}{730}\approx 10.023287671+29.992227397i
x=\frac{-\sqrt{479361511}i+7317}{730}\approx 10.023287671-29.992227397i
Graph
Share
Copied to clipboard
365x^{2}-7317x+365000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7317\right)±\sqrt{\left(-7317\right)^{2}-4\times 365\times 365000}}{2\times 365}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 365 for a, -7317 for b, and 365000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7317\right)±\sqrt{53538489-4\times 365\times 365000}}{2\times 365}
Square -7317.
x=\frac{-\left(-7317\right)±\sqrt{53538489-1460\times 365000}}{2\times 365}
Multiply -4 times 365.
x=\frac{-\left(-7317\right)±\sqrt{53538489-532900000}}{2\times 365}
Multiply -1460 times 365000.
x=\frac{-\left(-7317\right)±\sqrt{-479361511}}{2\times 365}
Add 53538489 to -532900000.
x=\frac{-\left(-7317\right)±\sqrt{479361511}i}{2\times 365}
Take the square root of -479361511.
x=\frac{7317±\sqrt{479361511}i}{2\times 365}
The opposite of -7317 is 7317.
x=\frac{7317±\sqrt{479361511}i}{730}
Multiply 2 times 365.
x=\frac{7317+\sqrt{479361511}i}{730}
Now solve the equation x=\frac{7317±\sqrt{479361511}i}{730} when ± is plus. Add 7317 to i\sqrt{479361511}.
x=\frac{-\sqrt{479361511}i+7317}{730}
Now solve the equation x=\frac{7317±\sqrt{479361511}i}{730} when ± is minus. Subtract i\sqrt{479361511} from 7317.
x=\frac{7317+\sqrt{479361511}i}{730} x=\frac{-\sqrt{479361511}i+7317}{730}
The equation is now solved.
365x^{2}-7317x+365000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
365x^{2}-7317x+365000-365000=-365000
Subtract 365000 from both sides of the equation.
365x^{2}-7317x=-365000
Subtracting 365000 from itself leaves 0.
\frac{365x^{2}-7317x}{365}=-\frac{365000}{365}
Divide both sides by 365.
x^{2}-\frac{7317}{365}x=-\frac{365000}{365}
Dividing by 365 undoes the multiplication by 365.
x^{2}-\frac{7317}{365}x=-1000
Divide -365000 by 365.
x^{2}-\frac{7317}{365}x+\left(-\frac{7317}{730}\right)^{2}=-1000+\left(-\frac{7317}{730}\right)^{2}
Divide -\frac{7317}{365}, the coefficient of the x term, by 2 to get -\frac{7317}{730}. Then add the square of -\frac{7317}{730} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7317}{365}x+\frac{53538489}{532900}=-1000+\frac{53538489}{532900}
Square -\frac{7317}{730} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7317}{365}x+\frac{53538489}{532900}=-\frac{479361511}{532900}
Add -1000 to \frac{53538489}{532900}.
\left(x-\frac{7317}{730}\right)^{2}=-\frac{479361511}{532900}
Factor x^{2}-\frac{7317}{365}x+\frac{53538489}{532900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7317}{730}\right)^{2}}=\sqrt{-\frac{479361511}{532900}}
Take the square root of both sides of the equation.
x-\frac{7317}{730}=\frac{\sqrt{479361511}i}{730} x-\frac{7317}{730}=-\frac{\sqrt{479361511}i}{730}
Simplify.
x=\frac{7317+\sqrt{479361511}i}{730} x=\frac{-\sqrt{479361511}i+7317}{730}
Add \frac{7317}{730} to both sides of the equation.
x ^ 2 -\frac{7317}{365}x +1000 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 365
r + s = \frac{7317}{365} rs = 1000
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7317}{730} - u s = \frac{7317}{730} + u
Two numbers r and s sum up to \frac{7317}{365} exactly when the average of the two numbers is \frac{1}{2}*\frac{7317}{365} = \frac{7317}{730}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7317}{730} - u) (\frac{7317}{730} + u) = 1000
To solve for unknown quantity u, substitute these in the product equation rs = 1000
-\frac{53538489}{532900} - u^2 = 1000
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 1000--\frac{53538489}{532900} = -\frac{479361511}{532900}
Simplify the expression by subtracting -\frac{53538489}{532900} on both sides
u^2 = \frac{479361511}{532900} u = \pm\sqrt{\frac{479361511}{532900}} = \pm \frac{\sqrt{479361511}}{730}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7317}{730} - \frac{\sqrt{479361511}}{730} = 10.023 - 29.992i s = \frac{7317}{730} + \frac{\sqrt{479361511}}{730} = 10.023 + 29.992i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}